Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.
In order to improve the efficiency of bioleaching heavy metal from the contaminated soil using Penicillium chrysogenum(P.chrysogenum),experiment was conducted to evaluate the influence of heavy metal stress on P.chrysogenum during bioleaching.The morphology and physiology of P.chrysogenum were observed.Assuming that the heavy metals are all leached out from the experiment soil,heavy metals are added into the agar medium by simulating the heavy metal content in the soil.It is concluded that the survivable heavy metal contaminated soil mass range for P.chrysogenum is 2.5-5.0 g.As for biomass determination,the contaminated soil is added into the liquid medium directly.The soil mass that P.chrysogenum can be survivable is in the range of 2.5-8.75 g.In this mass range,the biomass of P.chrysogenum is bigger than that of the control sample.10 g soil mass is the threshold of the growth of P.chrysogenum.102.2 mg/L gluconic acid,156.4 mg/L oxalic acid,191.6 mg/L pyruvic acid,0.02 mg/L citric acid,0.03 mg/L malic acid and 70.6 mg/L succinic acid are determined after 15 d bioleaching.The mycelium is broken into fragments,and heavy metals are adsorbed on the cell wall or transported into the cytoplasm during bioleaching.The GOD activity declines from 1.08 U/mL to 0.2 U/mL under 400 mg/L of multi-metal stress.The influence of Pb on GOD activity is bigger than that of Cr and Cd,and the GOD activity is not influenced apparently by Mn,Zn and Cu.
Bioleaching is an environment-friendly and economical technique to remove heavy metals from contaminated soil.The objective of this work is to find out an indigenous strain to remedy soil contaminated by Zn,Pb,Cu and Cd.A strain which was selected from the soil of a local smelting industry was found to be able to produce many organic acids and degrade pH value of the liquid medium.The fungus strain is identified as Penicillium Chrysogenum (P.Chrysogenum) by sequencing 18srDNA and ITS.Bioleaching condition using P.Chrysogenum is optimized.Glucose is the best carbon source for P.Chrysogenum and inorganic nitrogen is better than organic nitrogen.In addition,neutral solution and room temperature are fit for P.Chrysogenum to bioleach.In the one-step bioleaching,the bioleaching ratios are 39.95% for Zn,9.4% for Pb,34.89% for Cu and 49.59% for Cd,which are 53.89% for Zn,14.44% for Pb,55.53% for Cu and 62.81% for Cd in the two-step bioleaching.The efficiency of two-step bioleaching is better than the one-step bioleaching.P.Chrysogenum is effective in removing heavy metals from the contaminated soil.
A novel inorganic polymer flocculant,poly-ferric sulfate(BPFS) was prepared by oxidation of ferrous sulfate using domestic Thiobacillus ferrooxidans(T·f) under acid condition.The optimal conditions for the preparation were pH value of 1.5,(NH4)2SO4 dosage of 0.5 g/L,initial Fe2+ concentration of 45g/L,inoculum 10%,rotating speed of 120 r/min,reaction time of 5-6 d and reaction temperature of 30 ℃.Under the optimal conditions,the BPFS product with pH value of 1.5-2.2,basicity of 17.5%-22.7% and total iron content of 43.87-45.24 g/L was obtained.The application of the BPFS to three wastewaters was carried out,and the removal efficiencies of COD,decolorization and Zn2+ by BPFS can be reached 70%,90% and 99%,respectively.The result suggests that the BPFS is an excellent flocculant for water treatment.