In this paper, a calculation model based on the subsection displacement theory and the large deflection analysis is developed to describe the dynamic response of isotropic laminated circular plates impacted by a soft body. The model takes into account the interlaminar shear effect induced by the middle weak layer. It is proved by numerical examples that the difference between the model developed in this paper and that based on the classical laminated theory mainly depends on three factors, the elastic modulus of the glue, the radius of the circular plate and the impact force.
An analytical model is developed to study the crushing behavior and energy absorption capability of a single elliptical tube impacted by two parallel rigid plates, with and without consideration of the strain hardening effect. The four-hinge collapse mechanism is used, and the governing equation is derived from Lagrange equations of the second kind. The numerical simulation of the dynamic response of the elliptical tube under impact using the finite element explicit code LS-DYNA is performed. The reaction force-displacement curve and displacement-time curve of the plate obtained from the two methods are in good agreement.
The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L) model and the dynamic rigid, linear hardening plastic, locking (D-R-LHP-L) model, both considering the effects of strain-rate on the material properties. The shock wave speed relevant to these two models is derived. Consider the case of a bar made of one of such material with initial length L 0 and initial velocity v i impinging onto a rigid target. The variations of the stress, strain, particle velocity, specific internal energy across the shock wave and the cease distance of shock wave are all determined analytically. In particular the "energy conservation condition" and the "kinematic existence condition" as proposed by Tan et al. (2005) is re-examined, showing that the "energy conservation condition" and the consequent "critical velocity", i.e. the shock can only be generated and sustained in R-PP-L bars when the impact velocity is above this critical velocity, is incorrect. Instead, with elastic deformation, strain-hardening and strain-rate sensitivity of the cellular materials being considered, it is appropriate to redefine a first and a second critical impact velocity for the existence and propagation of shock waves in cellular solids. Starting from the basic relations for shock wave propagating in D-R-LHP-L cellular materials, a new method for inversely determining the dynamic stress-strain curve for cellular materials is proposed. By using e.g. a combination of Taylor bar and Hopkinson pressure bar impact experimental technique, the dynamic stress-strain curve of aluminum foam could bedetermined. Finally, it is demonstrated that this new formulation of shock theory in this one-dimensional stress state can be generalized to shocks in a one-dimensional strain state, i.e. for the case of plate impact on cellular materials, by simply making proper replacements of the
To safely land after different drops, cats can perfectly use their limbs as dampers to dissipate impact forces. Yet, we know little about the contribution of the forelimbs and hindlimbs of cats to attenuating the impact forces during landing. In order to investigate this, we analyzed the landing impulses and energy absorption based on the ground reaction forces and high-speed video recordings of cats performing self-initiated jump downs at different heights. Our results show that the distribution of impact forces between forelimbs and hindlimbs exhibits a landing height-dependent manner. Furthermore, combining the experimental measurements and the inverted pendulum-spring model, we find that variation in landing angle is correlated with the distribution manner. This posturedependent actuation allows the animal to tune the distribution of energy absorption between forelimbs and hindlimbs. These findings highlight how cats perfectly jump down using their limbs, providing fundamental insights into the importance of control mechanisms that attenuate landing impulses safely and efficiently.
Zhiqiang ZhangHui YuJialing YangLili WangLiming Yang