This paper studied the mechanism of the alkene insertion elementary step in the asymmetric hydroformylation (AHF) catalyzed by RhH(CO)2[(R,S)-Yanphos] using four alkene substrates (CH2=CH- Ph, CH2=CH-Ph-(p)-Me, CH2=CH-C(==O)OCH3 and CH2=CH-OC(=O)-Ph, abbreviated as A1-A4). Interestingly, the equatorial vertical coordination mode (A mode) with respect to the Rh center was found for AI and A2 but not for A3 and A4, although the equatorial in-plane coordination mode (E mode) was found for A1 -A4. The relative energy of the E mode of the -q2-intermediates is lower than that of the A mode. In the alkene insertion step, Path 1 is more favorable than Path 2 for this system. As for AI and A2, there could be a transformation between 2eq and 2ax.
In this paper, we used density functional theory(DFT) computations to study the mechanisms of the hydroacylation reaction of an aldehyde with an alkene catalyzed by Wilkinson's catalyst and an organic catalyst 2-amino-3-picoline in cationic and neutral systems. An aldehyde's hydroacylation includes three stages: the C–H activation to form rhodium hydride(stage I), the alkene insertion into the Rh–H bond to give the Rh-alkyl complex(stage II), and the C–C bond formation(stage III). Possible pathways for the hydroacylation originated from the trans and cis isomers of the catalytic cycle. In this paper, we discussed the neutral and cationic pathways. The rate-determining step is the C–H activation step in neutral system but the reductive elimination step in the cationic system. Meanwhile, the alkyl group migration-phosphine ligand coordination pathway is more favorable than the phosphine ligand coordination-alkyl group migration pathway in the C–C formation stage. Furthermore, the calculated results imply that an electron-withdrawing group may decrease the energy barrier of the C–H activation in the benzaldehyde hydroacylation.