The linear mixed-effects model (LMM) is a very useful tool for analyzing cluster data. In practice, however, the exact values of the variables are often difficult to observe. In this paper, we consider the LMM with measurement errors in the covariates. The empirical BLUP estimator of the linear combination of the fixed and random effects and its approximate conditional MSE are derived. The application to the estimation of small area is provided. Simulation study shows good performance of the proposed estimators.
In practical survey sampling, nonresponse phenomenon is unavoidable. How to impute missing data is an important problem. There are several imputation methods in the literature. In this paper, the imputation method of the mean of ratios for missing data under uniform response is applied to the estimation of a finite population mean when the PPSWR sampling is used. The imputed estimator is valid under the corresponding response mechanism regardless of the model as well as under the ratio model regardless of the response mechanism. The approximately unbiased jackknife variance estimator is also presented. All of these results are extended to the case of non-uniform response. Simulation studies show the good performance of the proposed estimators.