A novel inorganic-organic composite membrane,namely poly(vinylidene fluoride) PVDF-glass fiber(PGF) composite membrane,was prepared and reinforced by interfacial ultraviolet(UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber.The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling(KH570) as the initiator and the polymer solution with acrylamide monomer(AM) as the grafting block.The Fourier transform infrared spectrometer-attenuated total reflectance(FTIR-ATR) spectra and the energy dispersive X-ray(EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix.The formation mechanisms,permeation,and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions.The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability,and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2 wt.%.
Nan LuoRongle XuMin YangXing YuanHui ZhongYaobo Fan
Both intemal carbon source and some external carbon sources were used to improve the nutrient removal in Anaerobic-Anoxic-Oxic-Membrane Bioreactor (A2/O-MBRs), and their technical and cost analysis was investigated. The experimental results showed that the nutrient removals were improved by all the carbon source additions. The total nitrogen and phosphorus removal efficiency were higher in the experiments with external carbon source additions than that with internal carbon source addition. It was found that pathways of nitrogen and phosphorus transform were different dependent on different carbon source additions by the mass balance analysis. With extemal carbon source addition, the simultaneous nitrification and denitrification occurred in aerobic zone, and the P-uptake in aerobic phase was evident. Therefore, with addition of C-MHP (internal carbon source produced from sludge pretreatment by microwave-H2O2 process), the denitrification and phosphorus-uptake in anoxic zone was notable. Cost analysis showed that the unit nitrogen removal costs were 57.13 CNY/kg N of C-acetate addition and 54.48 CNY/kgN of C-MHP addition, respectively. The results indicated that the C-MHP has a good technical and economic feasibility to substitute extemal carbon sources partially for nutrient removal.
Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride)(PVDF) composite membrane(GFRP-CM). The factors considered for experimental design were the UV(ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0–0.25 wt.%,solvent of N-Dimethylacetamide(DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy(FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance(FTIR-ATR) and energy dispersive X-ray spectroscopy(EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM.
能耗是再生水厂运行主要的考核指标.采用比能耗分析法、单元能耗分析法以及冗余分析法等探讨了清河再生水厂不同污水处理工艺(倒置A2/O、A2/O和A2/O-MBR)的能耗构成和时空分布特征.重点考察了A2/O-MBR工艺的主要能耗环节和原因,探讨了A2/O-MBR工艺的节能改造方法,并比较了其改造前后的能耗.结果表明,曝气是清河再生水厂污水处理的常规工艺和A2/O-MBR工艺的主要耗能需求,分别占总能耗的42.97%和50.65%.在保证A2/O-MBR工艺出水水质的同时,采用脉冲曝气改造后节能效果明显.改造后的膜运行通量增大约20%,吨水能耗为0.53 k W·h·t-1,降幅达42.39%,去除单位COD能耗为1.29 k W·h·kg-1,降幅达54.74%.该厂A2/O-MBR工艺回流量大,但与出水水质相关性较弱.在一定范围内降低回流比不会造成出水水质恶化,因此可作为进一步节能的方向之一.