Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and stochastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deterministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neuron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electrical and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological functions of nervous systems.
It is crucially important to study different synchronous regimes in coupled neurons because different regimes may correspond to different cognitive and pathological states. In this paper, phase synchronization and its transitions are discussed by means of theoretical and numerical analyses. In two coupled modified Morris-Lecar neurons with a gap junction, we show that the occurrence of phase synchronization can be investigated from the dynamics of phase equation, and the analytical synchronization condition is derived. By defining the phase of spike and burst, the transitions from burst synchronization to spike synchronization and then toward nearly complete synchronization can be identified by bifurcation diagrams, the mean frequency difference and time series of neurons. The simulation results suggest that the synchronization of bursting activity is a multi-time-scale phenomenon and the phase synchronization deduced by the phase equation is actually spike synchronization.