The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride (Fe(TPPF20)Cl) were carried out by using the Density Functional Theory (DFT) UB3LYP with STO-3G^* and 6-31G^* basis sets, respectively. The electronic properties and the structures of high-lying molecular orbitals were analyzed in detail. The results show that partial spin is transferred from the Fe atom to the porphyrin ring and some electron with the spin opposite to the unpaired electron on the Fe atom is transferred from the porphyrin ring to the Fe atom. The π and σ-type bonding between the Fe atom and the porphyin ring cause the transfer. The fluorination enhances the electron transfer and the chemical stability of the complex. The high stability is important for the complex possessing high catalytic activity. The catalysis mechanism of oxygen molecule activation on the complex surface is also discussed based on the symmetry of the molecular orbitals.