A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the alloy before and after the treatment were investigated by scanning electron microscopy and X-ray diffraction. The results show that significant surface modification can be induced by HCPEB with the pulse number reaching 10. Craters with typical morphologies on the Cu-25Cr alloy surface are formed due to the dynamic thermal field induced by the HCPEB. Micro-cracks, as a unique feature, are well revealed in the irradiated Cu-25Cr specimens and attributed to quasi-static thermal stresses accumulated along the specimen surface. The amount of cracks is found to increase with the pulse number and a preference of these cracks to Cr phases rather than Cu phases is also noted. Another characteristic produced by the HCPEB is the fine Cr spheroids, which are determined to be due to occurrence of liquid phase separation in the Cu-25Cr alloy. In addition, an examination on surface roughness of all specimens reveals that more pulses will produce a roughened surface, as a result of compromising the above features.
Cu with and without La addition was prepared and the effect of a trace amount of La on the arc erosion behaviors and oxidation resistance of Cu alloys was investigated. The results indicate that CuLa alloy exhibits superior oxidation resistance and arc erosion resistance. The contact resistance and temperature rise were obviously improved. The oxidation resistance of CuLa alloy mainly is due to the interface wrapping of La2O3 particles and CuLa alloy phase on Cu atoms. Thermodynamic calculation indicated that La2O3 could form preferentially in the CuLa alloy, which was beneficial for the protection of the Cu substrate. According to kinetics analysis, the activation energy of CuLa alloy was higher than that of pure Cu, indicating the better oxidation resistance of CuLa alloys.
A Cu-50Cr alloy was treated by the high current pulsed electron beam(HCPEB)at 20 and 30 ke V with pulse numbers ranging from 1 to 100.Surface morphologies and microstructures of specimens before and after the treatments were investigated by employing scanning electron microscopy and X-ray diffraction.Results show that the HCPEB technique is able to induce remarkable surface modifications for the Cu-50Cr alloy.Cracks in Cr phases appear even after one-pulse treatment and their density always increases with the pulse number.Formation reason for these cracks is attributed to quasi-static thermal stresses accumulated along the specimen surface.Craters with typical morphologies are formed due to the dynamic thermal field induced by the HCPEB and they are found to prefer the sites near cracks or boundaries between neighboring Cr phases.Another microstructural characteristic produced by the HCPEB is the fine Cr spheroids,which are determined to be due to occurrence of liquid phase separation in the Cu-50Cr alloy.Finally,a general microstructural evolution profile that incorporates various HCPEB-induced surface features is tentatively outlined.
The AI-AIN-Si composites were prepared in the gas-in-liquid in situ synthesized flow-reaction-system, which was implemented by a powder metallurgy and reaction sin- tering route. The experimental results showed that A1-AIN- 50SiB material (prepared by ball-milling powders) and AI- AIN-50SiM material (prepared by mixing powders) exhibited the semi-continuous Si structures and the isolated Si islands, respectively. Subsequently, the AI-AIN-50Si materials were selected as the model materials by phase identification and microstructure analysis. The dynamic microstructural evolu- tion of AI-AIN-50Si materials was investigated using the computational fluid dynamics (CFD) method. Mathematical models and simulation results showed that the in situ synthesis of AIN was strongly influenced by the structure and the flow- path ((Cg,N2/lg,N2)+(Cs,AlN/ls,AiN)). The flow paths of AI-AIN-50Si^B material were restricted by the semi-continuous Si. These Si structures can promote the formation of the strong turbulence with gradually weakened fluctuation, so that the in situ synthesis of AIN was interconnected and surrounded by an interpenetrating Si network. In contrast, the flow paths of AI- AIN-50Si^B material can easily pass through the isolated Si due to its mild turbulence with linear relationship. As a result, AIN was separated by the isolated Si and agglomerated in the matrix. Overall, the present work provides new insights into dynamic microstructural evolution in in situ reaction sinter- ing systems.