Self-assembled nanostructures of lipids and nanoparticles hold great promise for applications in such fields as nanomedicine. This paper uses the self-consistent field theory to investigate the self-assembly behavior of lipid molecules and nanoparticles with different shapes in an aqueous solution. It is found that the lipid molecules can form monolayered and bilayered nanostructures around the nanopartieles with different shapes (e.g., triangular, square, hexagonal and octangular). With decreasing the size of nanoparticles or increasing the number of polygon edges, the shape of lipid layers will approach an approximately spherical shape. These findings may help to predict and design novel drug delivery nanocarriers.
TiA1SiN nano-composite coatings with Silicon contents from 4.1 to 23.9 at.% were deposited on Silicon wafers. The nano- hardness, microstructure, and adhesion force of the coatings were deeply affected by Silicon contents. The TiA1SiN with 9.0 at.% Silicon has a maximum hardness of 40.9 GPa, a highest adhesion force of 67 N and a lowest friction coefficient of 0.5. Microstructures show that Silicon doping increases the hardness of coating due to solid solution hardening effect and grain boundary enhancement effect. The amorphous Si3N4 matrix, which contains (Ti,Al)N nano-crystals, is formed as the Silicon content is increased. The matrix contributes to the nano-hardness and helps to resist surface oxidization. Especially, the matrix induces low surface roughness and decreases the friction coefficient.
Parallel groove surface textures with different area densities were fabricated on ASTM 1045 steel. Friction tests were con- ducted under dry sliding condition. Temperature rise, friction coefficient and wear of both the textured and untextured speci- mens were studied. An embedded K-type thermocouple beneath the friction surfaces was employed to measure frictional tem- perature rise. The results indicated that the temperature rise of the textured specimen was obviously reduced compared with that of the untextured specimen, although the difference between the friction coefficients was not significan.. The specimen with high texture density exhibited a small temperature rise. The difference in temperature rise between the specimens with different texture densities can be primarily attributed to differences in heat dissipation and energy allocation between the tri- bo-pairs caused by the textured structure. The energy consumed by wear and plastic deformation was small in ~:omparison with the total energy input by friction, thus, the influence of these factors on temperature rise can be considered to be~ negligible.
The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous do- main within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the per- meability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interracial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stress- es between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.
ZHANG SongPengZHANG XiangJunTIAN YuMENG YongGangLIPOWSKY Herbert
In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interracial effect) and the characteristic relaxation time λ0, were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic theological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.