The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green sol‐vent is of great interest in green chemistry. In this work, we present a systematic study of a Pt/ZnO catalyst for the selective oxidation of benzyl alcohol at room temperature under base‐free aqueous conditions. Experimental observations and density functional theory calculations suggest that ZnO as a support can facilitate the adsorption of benzyl alcohol, which subsequently reacts with the activated oxygen species on the Pt catalyst, producing benzaldehyde. The resulting solid achieves a high conversion(94.1 ± 5.1% in 10 h) of benzyl alcohol and nearly 100% selectivity to benzalde‐hyde with ambient air as the oxidant. In addition, by introducing a small amount of Bi(1.78 wt%) into Pt/ZnO, we can further enhance the activity by 350%.
Juanjuan LiuShihui ZouJiachao WuHisayoshi KobayashiHongting ZhaoJie Fan
The solvent‐free oxidation of benzyl alcohol was studied using supported Pd‐Ni bimetallic nanoparticles.Compared with monometallic Pd,the addition of Ni to Pd was found to be effective in suppressing the nondesired product toluene,thereby enhancing the selectivity towards benzaldehyde.This result was attributed to a dual effect of Ni addition:the weakening of dissociative adsorption of benzyl alcohol and the promotion of oxygen species involved in the oxidation pathway.
Jianwei CheMengjia HaoWuzhong YiHisayoshi KobayashiYuheng ZhouLiping XiaoJie Fan
lnkjet printing (IJP) synthesis has emerged as a useful technique for the fabrication of functional metal oxides in the fields of nanotechnology and materials science. In this paper, we will review the fundamental state-of-the-art principles of the special ink formulations used for IJP synthesis of functional metal oxides and the applications of these oxides.