A better understanding of airflow characteristics in the upper airway(UA) is crucial in investigating obstructive sleep apnea(OSA), particle sedimentation, drug delivery, and many biomedical problems. Direct visualization of air flow patterns in in-vitro models with realistic anatomical structures is a big challenge. In this study, we constructed unique half-side transparent physical models of normal UA based on realistic anatomical structures. A smoke-wire method was developed to visualize the air flow in UA models directly. The results revealed that the airflow through the pharynx was laminar but not turbulent under normal inspiration, which suggested that compared with turbulent models, a laminar model should be more suitable in numerical simulations. The flow predicted numerically using the laminar model was consistent with the observations in the physical models. The comparison of the velocity fields predicted numerically using the half-side and complete models confirmed that it was reasonable to investigate the flow behaviors in UA using the half-side model. Using the laminar model, we simulated the flow and evaluated the effects of UA narrowing caused by rostral fluid shift on pharyngeal resistance. The results suggested that fluid shift could play an important role in the formation of hypopnea or OSA during sleep.
目的用计算流体力学模拟的方法和体外模型实验的手段,研究呼吸时真实结构的上气道内的流动状态和压力分布,同时验证数值模拟模型的准确性。方法首先基于磁共振图像,借助Mimics软件重建上气道三维结构。在此真实几何结构基础上,建立上呼吸道内流动的有限元分析模型,以及制作相应的实体模型。模拟并测量呼吸流量为200、400和600 m L/s时的情况,并将数值模型预测的壁面压力分布与实测结果比较。结果如果气道内气流流量相同,吸气时气道两端的压差比呼气时大,即吸气时气道阻力比呼气时大。不同点压力分布的数值计算结果与实体模型测量结果一致。数值模拟结果表明,吸气时气道悬雍垂以及会厌后的舌后区域流动速度较高,悬雍垂下舌后区有涡旋产生。呼气时矢状位鼻咽顶端靠近后壁处,冠状位鼻咽、会厌下口咽处均有涡旋产生。结论数值模型可以准确地模拟上气道的流动状态和压力分布,直观地反映上气道内流动特点。作为非侵入式的工具,气道模型和数值模拟可以在探索阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)的发病机制和有效治疗方法的过程中发挥重要作用。