The solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material was investigated by using the generalized Almansi's theorem and the Schmidt method.The problem was formulated through Fourier transform into three pairs of dual integral equations,in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations,the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials.Finally,the relations between the electric filed,the magnetic flux field and the stress field near the crack edges were obtained and the effects of the shape of the rectangular crack on the stress,the electric displacement and magnetic flux intensity factors in a piezoelectric/piezomagnetic composite material were analyzed.
The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier transform is applied, and the mixed- boundary value problems are converted into three pairs of dual integral equations with the unknown variables being the displacement jumps across the crack surfaces. The effects of the geometric shape of the rectangular crack, the circular frequency of the incident waves, and the lattice parameter of the orthotropic elastic medium on the dynamic stress field near the crack edges are analyzed. The present solution exhibits no stress singularity at the rectangular crack edges, and the dynamic stress field near the rectangular crack edges is finite.