Buffer layer provides an opportunity to enhance the quality of ultrathin magnetic films. In this paper, Co films with different thickness of Co Si2 buffer layers were grown on Si(001) substrates. In order to investigate morphology, structure,and magnetic properties of films, scanning tunneling microscope(STM), low energy electron diffraction(LEED), high resolution transmission electron microscopy(HRTEM), and surface magneto-optical Kerr effect(SMOKE) were used. The results show that the crystal quality and magnetic anisotropies of the Co films are strongly affected by the thickness of Co Si2 buffer layers. Few Co Si2 monolayers can prevent the interdiffusion of Si substrate and Co film and enhance the Co film quality. Furthermore, the in-plane magnetic anisotropy of Co film with optimal buffer layer shows four-fold symmetry and exhibits the two-jumps of magnetization reversal process, which is the typical phenomenon in cubic(001) films.
The magneto-optical Kerr effect susceptometry technique is proposed to determine the uniaxial magnetic anisotropy (UMA) constant Ku. The magnetic properties of Cu/Fe/SiO2/Si grown by dc magnetron sputtering were investigated. The in-plane uniaxial magnetic anisotropy was probed by the magneto-optical Kerr effect (MOKE). The value of UMA, Ku = 2.5 x 103 J/m3, was simulated from the field dependence of ac susceptibility along the hard axis according to the Stoner-Wohlfarth (S-W) model, which is consistent with Ku = 2.7~ 103 J/m3 calculated from the magnetic hysteresis loops. Our results show that the magneto-optical Kerr effect susceptometry can be employed to determine the magnetic anisotropy constant owing to its high sensitivity.
Owing to the epitaxial inducement of Au atom,Au interlayer was introduced to increase the perpendicular anisotropy and the coercivity in L10-FePt nanocomposite film.Micromagnetics can be used to reveal the relationship between microstructure and magnetic properties of materials,and give the information of the perpendicular anisotropy and coercivity.In this work,the effect of the Au interlayer on annealed[Fe(0.5 nm)/Pt(0.5 nm)/Au(d nm)]10 nanocomposite recording medium by a micromagnetic model was studied.The model contains three phases:hard magnetic phase,soft magnetic phase,and nonmagnetic phase.The calculated result shows that perpendicular orientation degree of the texture and proportion of a hard magnetic phase to the total phase in the annealed film are both enhanced by increasing Au interlayer thickness.This result can be conducive to the improvement of the perpendicular anisotropy and the coercivity of the FePt nanocomposite film in the experiments.
A planar Hall effect(PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on a Si(001) substrate.Owing to the domain structure of iron film and the characteristics of PHE,the magnetization switches sharply in an angular range of the external field for two steps of 90° domain wall displacement and one step of 180°domain wall displacement near the easy axis,respectively.However,the magnetization reversal process near the hard axis is completed by only one step of 90° domain wall displacement and then rotates coherently.The magnetization reversal process mechanism near the hard axis seems to be a combination of coherent rotation and domain wall displacement.Furthermore,the domain wall pinning energy and uniaxial magnetic anisotropy energy can also be derived from the PHE measurement.
We report a facile method to synthesize dispersed Fe304@C nanoparticles (NPs). Fe304 NPs were firstly prepared via the high temperature diol thermal decomposition method. Fe304@C NPs were fabricated using glucose as a carbon source by hydro- thermal process. The obtained products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Raman spectra. The results indicate that the original shapes and magnetic property of Fe304 NPs can be well preserved. The magnetic particles are well dispersed in the carbon matrix. This strategy would provide an efficient approach for existing applications in Li-ion batteries and drug delivery. Meanwhile, it offers the raw materials to assemble future functional nanometer and micrometer superstructures.
We study the topological properties of a one-dimensional (1D) hardcore Bose-Fermi mixture using the exact diagonalization method. We firstly add a hardcore boson to a fermionic system and by examining the edge states we find that the quasi-particle manifests the topological properties of the system. Then we study a mixture with 7 fermions and 1 boson. We find that the mixture also exhibits topological properties and its behaviors are similar to that of the corresponding fermionic system. We present a qualitative explanation to understand such behaviors using the mapping between a hardcore boson and a spinless fermion. These results show the existence of topological properties in a 1D hardcore Bose-Fermi mixture and may be realized using cold atoms trapped in optical lattices experimentally.