The quasi-neutral limit of the multi-dimensional non-isentropic bipolar Euler-Poisson system is considered in the present paper. It is shown that for well-prepared initial data the smooth solution of the non-isentropic bipolar Euler-Poisson system converges strongly to the compressible non-isentropic Euler equations as the Debye length goes to zero.
We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.
We extend the traditional kinetic scheme for ideal gases to the Euler equations with the equation of state for a multi-component stiffened gas. Based on a careful analysis of the oscillation mechanism of the traditional kinetic scheme across contact discontinuities, we propose a new non-oscillatory kinetic (NOK) scheme for multi-component stiffened gases. The basic idea in the construction is to use a flux splitting technique to construct numerical fluxes which do not depend on the concrete form of the equilibrium state. The new scheme can not only can avoid spurious oscillations of the pressure and velocity near a material interface which are observed in the traditional kinetic schemes such as the kinetic flux vector splitting (KFVS) and BGK schemes, but also can deal with the stiffened gas equation of state. Moreover, we also carry out a careful analysis on the consistency condition, truncation error and positivity of the NOK scheme. A number of 1D and 2D numerical tests are presented which demonstrate the accuracy and robustness of the new scheme in the simulation of problems with smooth, weak and strong shock wave regions.