Hierarchically nanostructured porous carbonated hydroxyapatite coatings (HNPCs) on Ti6Al4V substrate were fabricated by a two-stage application route: fabrication of nacre coatings (NCs) on Ti6Al4V substrate by electrophoretic technique, and conversion of NCs to HNPCs in a phosphate buffer solution (PBS) by microwave irradiation method. Their samples were characterized by using XRD, FT-IR, SEM, TEM, and N2 adsorption-desorption isotherms. The results show that the microwave irradiation technique improves obviously the conversion rate of NCs to HNPCs as compared with conventional method. After soaking the NCs in the PBS, calcium ions are released from the nacre particles and react with phosphate ions to form carbonated hydroxyapatite nanoparticles. These nanoparticles aggregate to form the plate-like carbonated apatite. The mesopores with a size of about 3.9 nm and macropores with the diameters of 1~4μm exist within and among the carbonated apatite plates, respectively. Simulated body fluid immersion tests reveal that the HNPCs have a good in vitro bioactivity.