您的位置: 专家智库 > >

国家自然科学基金(61121062)

作品数:3 被引量:4H指数:1
相关作者:邓映蒲姜宇鹏更多>>
相关机构:中国科学院数学与系统科学研究院更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 2篇理学
  • 1篇自动化与计算...

主题

  • 1篇中国剩余定理
  • 1篇素数
  • 1篇伪素数
  • 1篇广义BENT...
  • 1篇函数
  • 1篇NEW
  • 1篇OVER
  • 1篇POLYNO...
  • 1篇PROOF
  • 1篇ALGEBR...
  • 1篇ALGORI...
  • 1篇EFFICI...
  • 1篇F5
  • 1篇FACTOR...
  • 1篇FACTOR...
  • 1篇CORREC...

机构

  • 1篇中国科学院数...

作者

  • 1篇姜宇鹏
  • 1篇邓映蒲

传媒

  • 2篇Scienc...
  • 1篇中国科学:数...

年份

  • 1篇2015
  • 2篇2013
3 条 记 录,以下是 1-3
排序方式:
A new proof for the correctness of the F5 algorithm被引量:2
2013年
In 2002, Faugere presented the famous F5 algorithm for computing GrSbner basis where two cri- teria, syzygy criterion and rewritten criterion, were proposed to avoid redundant computations. He proved the correctness of the syzygy criterion, but the proof for the correctness of the rewritten criterion was left. Since then, F5 has been studied extensively. Some proofs for the correctness of F5 were proposed, but these proofs are valid only under some extra assumptions. In this paper, we give a proof for the correctness of F5B, an equivalent version of F5 in Buchberger's style. The proof is valid for both homogeneous and non-homogeneous polynomial systems. Since this proof does not depend on the computing order of the S-pairs, any strategy of selecting S-pairs could be used in F5B or F5. Furthermore, we propose a natural and non-incremental variant of F5 where two revised criteria can be used to remove almost all redundant S-pairs.
SUN YaoWANG DingKang
关键词:F5
An efficient algorithm for factoring polynomials over algebraic extension field被引量:1
2013年
An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner basis computation is needed for factoring a polynomial over this extension field. Nothing more than linear algebraic technique is used to get a characteristic polynomial of a generic linear map. Then this polynomial is factorized over the ground field. From its factors, the factorization of the polynomial over the extension field is obtained. The algorithm has been implemented in Magma and computer experiments indicate that it is very efficient, particularly for complicated examples.
SUN YaoWANG DingKang
关键词:FACTORIZATION
强伪素数、覆盖同余式组以及广义bent函数被引量:1
2015年
本文考虑三个问题:强伪素数的计算、覆盖同余式组和广义bent函数.本文的创新点包括:(1)编程证明3 825 123 056 546 413 051是通过前9个素数为基的Miller-Rabin测试的最小合数;(2)证明Kim的猜想,即任意代数数域上的恰好覆盖同余式组必有模理想重复出现;(3)证明两类广义bent函数不存在.
姜宇鹏邓映蒲
关键词:中国剩余定理广义BENT函数
共1页<1>
聚类工具0