In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquefied petroleum gas; nature gas) and computed their concentrations and distributions based on the interactions between the structures and the effects of the explosion. In this study,5 scenarios were created to analyze the impact effect. Moreover,a coupling algorithm was put into practice,with a practical outflow boundary and joint strength are applied. Finally,the damage effects of each scenario were simulated. Our experimental results showed significant differences in the 5 scenarios concerning the damage effects on the building structures. The results from scenario 3 agree with the accident characteristics,demonstrating the effectiveness of our proposed modeling method. Our proposed method reflects gas properties,species and the concentration and distribution,and the simulated results validates the root cause,process,and consequences of accidental explosions. Furthermore,this method describes the evolution process of explosions in different building structures. Significantly,our model demonstrates the quantatative explosion effect of factors like gas species,gas volumes,and distributions of gases on explosion results. In this study,a feasible,effective,and quantitative method for structure safety is defined,which is helpful to accelerate the development of safer site regulations.
针对CH_4这种特别气体,对其实验结果运用数字化处理方法研究CH_4稳定性.在内径50.8 mm圆形管道内获得CH_4+2O_2预混气在不同初始压力条件下的胞格爆轰结果并使用烟膜记录,且测得的平均爆轰速度数据与CJ爆轰速度接近,在初始压力高于5 k Pa时爆轰可稳定传播.烟膜上形成的三波点轨迹十分不规则.为减少人为误差,使用改进后的数字化处理烟膜图像的技术方法,从烟膜轨迹中得出柱状图及自相关函数结果,发现CH_4+2O_2是一种爆轰十分不稳定的气体,并给出CH_4+2O_2预混气的爆轰胞格尺寸及差距,结果显示人为测量结果偏大而数字化处理方法更为准确.这种方法能计算CH_4+2O_2预混气胞格尺寸及不稳定度,完善了定量化预混气不稳定程度的方法.