Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra A H, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that A H is a C *-algebra. The correspondence between H and A H is strictly monotonic. Finally, a duality between D(H) and A H is given via an irreducible vacuum C *-representation of F.
Suppose X is a super-α-stable process in R^d, (0 〈 α〈 2), whose branching rate function is dr, and branching mechanism is of the form ψ(z) = z^1+β (0 〈0 〈β ≤1). Let Xγ and Yγ denote the exit measure and the total weighted occupation time measure of X in a bounded smooth domain D, respectively. The absolute continuities of Xγ and Yγ are discussed.