Small-molecule organic solar cell is a category of clean energy potential device since charge transfers between donor and acceptor.The morphologies,co-assembly behavior,interaction sites,and charge transfer of BTID-nF(n=1,2)/PC71BM donor-acceptor system in the active layer of organic solar cell have been studied employing scanning tunneling microscopy(STM),scanning tunneling spectroscopy(STS),density functional theory(DFT)calculations,and transient absorption(TA)spectroscopy.The results show that BTID-1F and BTID-2F form bright strip structures,whereas BTID-nF(n=1,2)/PC71BM form ridge-like structures with each complex composed of one BTID-nF(n=1,2)molecule and four PC71BM molecules which adsorbed around the BTID-nF(n=1,2)molecule by S···πinteraction.With the assistance of S···πinteraction between BTID-nF(n=1,2)and PC71BM,BTID-nF(n=1,2)/PC71BM co-assembled ridge-like structures are more stable than the BTID-nF(n=1,2)ridge structures.To investigate the charge transfer of BTID-nF(n=1,2)/PC71BM system,STS measurements,DFT calculation,and TA spectroscopy are further performed.The results show that charge transfer occurs in BTID-nF(n=1,2)/PC71BM system with the electron transferring from BTID-nF(n=1,2)molecules to PC71BM.
The title compound, (E)-4-(3-oxo-3-((4-(N-(pyrimidin-2-yl)sulfamoyl)-phenyl)ami- no)prop- 1-en- 1-yl)- 1,2-phenylene diacetate dimethanol, was synthesized by the reaction of caffeic acid with sulfadiazine and characterized by FT-IR, 1H-NMR spectroscopy, ESI-MS and X-ray single-crystal diffraction. It crystallizes in triclinic, space group P1 with a = 10.302(7), b = 11.621(8), c = 12.107(8)A, a = 100.904(9), β = 102.624(8), y = 95.501(9)°, V= 1374.5(15)A3, Z= 2, F(000) = 588, D,= 1.354 Mg/m3, Mr = 560.57,μ= 0.176 mm-1, 2 = 0.71073 A, the final R = 0.0666 and wR = 0.1950 for 4774 observed reflections with I 〉 2σ(I).
The title compound, (E)-N,N′-dicyclohexyl-1-(3-(3,4-dihydroxyphenyl)acryloyl)- urea (DDA), has been synthesized and characterized by FT-IR and 1H-NMR spectroscopy, ESI- MS, and X-ray single-crystal diffraction. Its crystallizes in monoclinic, space group C2/c with a = 20.483(12), b = 11.153(6), c = 21.134(12) , β = 117.098(7), V = 4298(4) 3, Z = 8, F(000) = 1664, Dc = 1.195 Mg/m3, Mr = 386.48, μ= 0.082 mm-1, the final R = 0.0474 and wR = 0.1370 for 4853 observed reflections with I 〉 2σ(I).
Three (2E)-3-(4'-halophenyl)prop-2-enoyl sulfachlorpyridazine sodium salts(XPSCA) were synthesized. Their chemical structures were confirmed by IH NMR and 13C NMR, electrospray ionization mass spectrometry (ESI-MS), and infrared(IR) spectroscopy. The interactions between XPSCA and bovine serum albumin(BSA) were investigated under imitated physiological condition by fluorescence quenching technique and UV-Vis absorption spectroscopy according to the Stern-Volmer equation. The results from the emission quenching at different tempera- tures indicate that the quenching mechanism of serum albumin by XPSCA was static quenching mechanism at low XPSCA concentrations or a combined quenching(static and dynamic) mechanism at higher XPSCA concentrations. At different temperatures, the binding constant and the binding sites of XPSCA with BSA were investigated, and the distances were evaluated according to F6rster non-radiative resonance energy transfer theory. The thermodynamic parameters were calculated according to van't Hoff equation, which implies that both van der Waals interaction and hydrogen bond played major roles in stabilizing the XPSCA-BSA complexes, whereas hydrophobic interactions were secondary. Moreover, the conformational changes in BSA were analyzed by synchronous fluorescence spectra.
DU Chuan-rong LUO Xuan WEI Jin-rui HE Ting-ting ZHENG Xiao-yu LIN Cui-wu