The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejection ability of the robust flight control for fighters, the sliding mode disturbance observer is designed to estimate the compounded disturbance including the unknown external disturbance and the effect of the control input saturation. Based on the backstepping technique and the compounded disturbance estimated output, the robust bounded flight control scheme is proposed for the fighter with the unknown external disturbance and the control input saturation. The closed-loop system stability under the developed robust bounded flight control scheme is rigorously proved using the Lyapunov method and the uniformly asymptotical convergences of all closed-loop signals are guaranteed. Finally, simulation results are presented to show the effectiveness of the proposed robust bounded flight control scheme for the uncertain longitudinal flight dynamics of the fighter.
A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation,using the anti-windup method and the fault detection observer technology.To estimate the system fault,a detection observer is designed for the longitudinal dynamics,and a fault-tolerant control law is developed to compensate for the fault effects of the longitudinal dynamics.Then,an anti-windup compensator is augmented into the fault-tolerant control law to eliminate the effect of input saturation.Using linear matrix inequality(LMI)technology,the detection observer based fault-tolerant controller is designed to ensure the stability of the closed-loop system and the convergence of the detection observer.Finally,the developed robust fault-tolerant control scheme is applied to the longitudinal model of an aircraft and simulation results are presented to illustrate the effectiveness of the proposed control scheme.
In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.
Abstract An adaptive dynamic surface control (DSC) scheme is proposed for the multiinput and multioutput (MIMO) attitude motion of nearspace vehicles (NSVs) in the presence of external dis turbance, system uncertainty and input saturation. The external disturbance and the system uncer tainty are efficiently tackled using a Nussbaum disturbance observer (NDO), and the adaptive controller is constructed by combining the dynamic surface control technique to handle the problem of "explosion of complexity" inherent in the conventional backstepping methodl For handling the input saturation, an auxiliary system is designed with the same order as that of the studied MIMO attitude system. Using the error between the saturation input and the desired control input as the input of the designed auxiliary system, a series of signals are generated to compensate for the effect of the saturation in the dynamic surface control design. It is proved that the developed control scheme can guarantee that all signals of the closedloop control system are semiglobally uniformly bounded. Finally, simulation results illustrate that the proposed control scheme can achieve satis factory tracking performance under the composite effects of the input saturation and the external disturbance.