In nature, a few living organisms such as diatoms, magnetotactic bacteria, and eggs have developed specific mineral structures, which can provide extensive protection or unique functions. However, most organisms do not have such structured materials due to their lack of biomineralization ability. The artificial introduction of biomimetic-constructed nanominerals is challenging but holds great promise. In this overview, we highlight two typical types of mineral- living complex systems. One involves biological surface-induced nanomaterials, which produces artificial living-mineral core-shell structures such as the mineral- encapsulated yeast, cyanobacteria, bacteria and viruses. The other involves internal nanominerals that could endow organisms with unique structures and properties. The applications of these biomimetic generated nanominerals are further discussed, mainly in four potential areas: storage, protection, "stealth" and delivery. Since biomineralization combines chemical, nano and biological technologies, we suggest that nanobiomimetic mineralization may open up another window for interdisciplinary research. Specifically, this is a novel material-based biological regulation strategy and the integration of living organisms with functional nanomaterials can create "super" or intelligent nanoscale living complexes for biotechnological practices.