Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quantitative traits, which include major gene detection and its effect and variation estimation. The effect and variation of major gene are estimated by the maximum likelihood method implemented via expectation-maximization (EM) algorithm. Major gene is tested with the likelihood ratio (LR) test statistic. Extensive simulation studies showed that joint analysis not only increases the statistical power of major gene detection but also improves the precision and accuracy of major gene effect estimates. An example of the plant height and the number of tiller of F2 population in rice cross Duonieai x Zhonghua 11 was used in the illustration. The results indicated that the genetic difference of these two traits in this cross refers to only one pleiotropic major gene. The additive effect and dominance effect of the major gene are estimated as -21.3 and 40.6 cm on plant height, and 22.7 and -25.3 on number of tiller, respectively. The major gene shows overdominance for plant height and close to complete dominance for number of tillers.
XIAO Jing WANG Xue-feng HU Zhi-qiu TANG Zai-xiang SUI Jiong-ming LI Xin XU Chen-wu
Based on the genetic models for triploid endosperm traits and on the methods for mapping diploid quantitative traits loci (QTLs), the genetic constitutions, components of means and genetic variances of QTL controlling endosperm traits under flanking marker genotypes of different generations were presented. From these results, a multiple linear regression method for mapping QTL underlying endosperm traits in cereals was proposed, which used the means of endosperm traits under flanking marker genotypes as a dependent variable, the coefficient of additive effect (d) and dominance effect (h1 and/or h2) of a putative QTL in a given interval as independent variables. This method can work at any position in a genome covered by markers and increase the estimation precision of QTL location and their effects by eliminating the interference of other relative QTLs. This method can also be easily used in other uneven data such as markers and quantitative traits detected or measured in plants and tissues different either in generations or at chromosomal ploidy levels, and in endosperm traits controlled by complicated genetic models considering the effects produced by genotypes of both maternal plants and seeds on them.
XU Chen-wu, LI Tao, SUN Chang-sen and GU Shi-Hang( Laboratory of Quantitative Genetics , Yangzhou University, Yangzhou 225009)