Geochemical studies on REE, trace elements and oxygen isotopes from metamorphic veins and their host metasedimentary rocks in the Zhoutan Group at two localities, Xiangshan and Yihuang, in central Jiangxi Province have been conducted in this paper. The results show that the metamorphic quartz veins inherited the REE and oxygen isotope geochemical characteristics from their host rocks, suggesting that the vein-forming fluids were derived from the host rocks. Additionally, fractionation degrees of the trace element pairs Zr-Hf, Nb-Ta, Y-Ho and U-Th in the veins are different from those of their host rocks. It is also indicated that the veins are the products of the fluids. The metamorphic veins within the Zhoutan Group metasedimentary rocks were formed principally as a result of lateral diffusion of the metamorphic fluids.
Using secondary spinel standard method, we have measured precisely the compositions of spinels of amphibole-bearing mantle peridotite xenoliths from Nüshan in eastern China, and calculated the mantle oxygen fugacities recorded by the xenoliths. Results indicate that the mantle metasomatism for forming amphiboles in Nüshan region of Anhui has resulted in the decrease of mantle redox, which is in contrast with theoretical estimation and previous research results from other areas around the world. Combining with related studies on the mantle of eastern China, we give a reasonable explanation to the 'new finding' and further elucidate the compositions and nature of mantle fluids in eastern China.
Detailed REE and trace elements geochemical studies of the Zhoutan Group metasedimentary rocks in central Jiangxi Province, China, and rock-forming minerals such as garnet were conducted and the results showed that the REEs are partly present in the rock-forming minerals and are dominantly contained in the lattice of accessory minerals. In the process of metamorphism the REEs between garnet porphyroblast and rock and the partitioning of REEs between garnet and the host rock is obviously controlled by the chemical composition of the system. The REEs compositions of metamorphic veins and their minerals display remarked lanthanide tetrad effects and the element pairs Zr-Hf, Y-Ho, Pb-Nd and U-Th have also experienced a certain degree of fractionation with respect to the metasedimentary rocks and they can be used as discriminating indicators to some extent for the occurrence of fluid processes in the process of metamorphism of the Zhoutan Group.
The conduit system of heat fluids in diapiric belt of Yinggehai basin is dominantly vertical faults and fractures . Detailed research on the formation mechanism and their occurrence features shows that the faults and fractures can be classified into three types: intrastratal dispersive hydrofracture, puncturing fault and upwarping-extensional fault. The development of the fault and fracture system not only resulted in the changes of the temperature and pressure fields in the basin, but also affected the hydrocarbon migration in the overpressured system. These faults and fractures constituted the main pathways for vertical hydrocarbon migration, and opening and closing intermittently led to episodic expulsion of overpressured fluid compartment. Thus there formed the pool-forming model of multi-source mixing and ploy-stage migration and accumulation for hydrocarbons in the Yinggehai basin.
The solubility measurements of WO3 in NaCl-H2O system with 4.0% by weight salt were carried out to study the supercritical phenomena of solubility. These experiments were carried out using rapid-quench pressure vessels, with quantitative Na2WO4-2H2O, HCl, NaCl and H2O in Pt capsule to determine the solubility of WO3 from supersaturated solution. The pressure was kept at 34 MPa, which was near the critical pressure 31.4 MPa and the temperatures varied from 250°C to 550°C. The experimental results indicate that the solubility of WO3 has the features of supercritical phenomenon in critical region and is sensitive to the change of system temperature and solvent density. The temperature and pressure in this experiment are close to those of ore-forming fluids in many tungsten deposits, so the features of supercritical geofluids can be helpful to investigating the ore-forming mechanism of tungsten deposit.
Using the secondary spinel standard, the authors have precisely measured theFe^(3+)/SIGMA Fe values of spinels in mantle xenoliths from Cenozoic basalts in eastern China, andestimated the oxygen fugacities recorded by 63 mantle xenoliths through olivine-orthopyroxene-spineloxygen barometry. The results indicate that the oxygen fugacities of the lithospheric mantle ineastern China are higher in the south than in the north. Among them, the oxygen fugacity of theNorth China craton lithospheric mantle is the lowest, similar to that of the oceanic mantle, whilethat of Northeast and South China are the same as that of the global continental mantle. Thevariations of mantle redox state in eastern China are mainly controlled by the C-O-H fluids derivedfrom the asthenospheric mantle. According to the mantle oxidation state, it can be concluded thatthe C-O-H fluids in the lithospheric mantle of eastern China consist mainly of CO_2 and minor H_2O,but CH_4-rich fluids should come from the asthenosphere where the oxidation state is lower.