In this paper,a kind of discrete delay food-limited model obtained by the Euler method is investigated,where the discrete delay τ is regarded as a parameter.By analyzing the associated characteristic equation,the linear stability of this model is studied.It is shown that Neimark-Sacker bifurcation occurs when τ crosses certain critical values.The explicit formulae which determine the stability,direction,and other properties of bifurcating periodic solution are derived by means of the theory of center manifold and normal form.Finally,numerical simulations are performed to verify the analytical results.