In this study, dynamic linkage of atmosphere-ocean coupling between the North Pacific and the tropical Pacific was demonstrated using a large number of ensemble perturbed initial condition experiments in a fully coupled fast ocean-atmosphere model (FOAM). In the FOAM model, an idealized mixed layer warming was initiated in the Kuroshio-Oyashio extension region, while the ocean and atmosphere remained fully coupled both locally and elsewhere. The modeling results show that the warm anomalies are associated with anomalous cyclonic winds, which induce initial warming anomalies extending downstream in the following winter. Then, the downstream warming spreads southwestward and induces SST warming in the equatorial Pacific via surface wind-evaporation-SST feedback. Warming in the tropical Pacific is further reinforced by Bjerknes' feedback.
利用美国的全球海洋同化资料SODA(simple ocean data assimilation)2.2.4(1871—2008)中的风应力数据,估算了风输入给南海波浪的能量。结果表明,风向南海波浪输入能量的年均值约为0.2TW,其空间分布冬季以南海北部为主,夏季以南部为主且强度比冬季要弱得多;风对南海波浪能量的输入一直呈减少趋势,用欧洲中期天气预报中心的再分析资料ERA-40(European Centre for Medium-Range Weather Forecasts re-analysis-40)(1957—2002)和ERA-20C(1900—2010)中的风场和海浪资料得到的趋势也是如此,1950年以来每年减少0.43%。用ERA-interim(1979—2014)中的有效波高数据可以把风给风浪和涌浪的能量输入区分开,两者的空间分布皆以南海北部为主,而给风浪的能量输入在南海南部还有一个高值区。尽管风输入给涌浪的能量略有增加,但给风浪的能量输入在不断减少,两者之和仍是减少。究其原因,控制南海的东亚季风最近几十年一直在减弱。这些结果对认识南海波浪未来的变化及其预报具有意义。
An extreme rainstorm hit southern China during 13–17 December 2013, with a record-breaking daily rainfall rate, large spatial extent, and unusually long persistence. We examined what induced this heavy rainfall process, based on observed rainfall data and NCEP–NCAR reanalysis data through composite and diagnostic methods. The results showed that a Rossby waveguide within the subtropical westerly jet caused the event. The Rossby wave originated from strong cold air intrusion into the subtropical westerly jet over the eastern Mediterranean. With the enhancement and northward shift of the Middle East westerly jet, the Rossby wave propagated slowly eastward and deepened the India–Burma trough, which transported a large amount of moisture from the Bay of Bengal and South China Sea to southern China. Strong divergence in the upper troposphere, caused by the enhancement of the East Asian westerly jet, also favored the heavy rainfall process over Southeast China. In addition, the Rossby wave was associated with a negative-to-positive phase shift and enhancement of the North Atlantic Oscillation, but convergence in the eastern Mediterranean played the key role in the eastward propagation of the Rossby wave within the subtropical westerly jet.