Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of an unknown error distribution and estimators of nuisance parameters. In this paper, we propose a randomly weighting test statistic and take its conditional distribution as an approximation to null distribution of the test statistic. It is shown that, under both the null and local alternative hypotheses, conditionally asymptotic distribution of the randomly weighting test statistic is the same as the null distribution of the test statistic. Therefore, the critical values of the test statistic can be obtained by randomly weighting method without estimating the nuisance parameters. At the same time, we also achieve the weak consistency and asymptotic normality of the randomly weighting least absolute deviation estimate in censored regression model. Simulation studies illustrate that the per-formance of our proposed resampling test method is better than that of central chi-square distribution under the null hypothesis.
In this paper, we consider a change point model allowing at most one change, X($\tfrac{i}{n}$\tfrac{i}{n}) = f($\tfrac{i}{n}$\tfrac{i}{n}) + e($\tfrac{i}{n}$\tfrac{i}{n}), where f(t) = α + θ $I_{(t_0 ,1)} $I_{(t_0 ,1)} (t), 0 ≤ t ≤ 1, {e($\tfrac{1}{n}$\tfrac{1}{n}), ..., e($\tfrac{n}{n}$\tfrac{n}{n})} is a sequence of i.i.d. random variables distributed as e with 0 being the median of e. For this change point model, hypothesis test problem about the change-point t0 is studied and a test statistic is constructed. Furthermore, a nonparametric estimator of t0 is proposed and shown to be strongly consistent. Finally, we give an estimator of jump θ and obtain it’s asymptotic property. Performance of the proposed approach is investigated by extensive simulation studies.
In a generalized linear model with q x 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ZiZ'i,the moment condition on responses as weak as possible and the other mild regular conditions, we prove that the maximum quasi-likelihood estimates for the regression parameter vector are asymptotically normal and strongly consistent.
YIN Changming, ZHAO Lincheng & WEI Chengdong School of Mathematics and Information Science, Guangxi University, Manning 530004, China