In this letter,the new concept of Relative Principle Component (RPC) and method of RPC Analysis (RPCA) are put forward. Meanwhile,the concepts such as Relative Transform (RT),Ro-tundity Scatter (RS) and so on are introduced. This new method can overcome some disadvantages of the classical Principle Component Analysis (PCA) when data are rotundity scatter. The RPC selected by RPCA are more representative,and their significance of geometry is more notable,so that the application of the new algorithm will be very extensive. The performance and effectiveness are simply demonstrated by the geometrical interpretation proposed.
A new hybrid wavelet-Kalman filter method for the estimation of dynamic system is developed, Using this method, the real-time multiscale estimation of the dynamic system is implemented, and the observation equation established is for the object signal itself rather than its wavelet decomposition. The simulation results show that this method can be used to estimate the object's state of the stacked system, which is the foundation of multiscale data fusion; besides the performance of the new algorithm developed in the letter is almost optimal.
This letter explores the distributed multisensor dynamic system, which has uniform sampling velocity and asynchronous sampling data for different sensors, and puts forward a new gradation fusion algorithm of multisensor dynamic system. As the total forecasted increment value between the two adjacent moments is the forecasted estimate value of the corresponding state increment in the fusion center, the new algorithm models the state and the forecasted estimate value of every moment. Kalman filter and all measurements arriving sequentially in the fusion period are employed to update the evaluation of target state step by step, on the condition that the system has obtained the target state evaluation that is based on the overall information in the previous fusion period. Accordingly, in the present period, the fusion evaluation of the target state at each sampling point on the basis of the overall information can be obtained. This letter elaborates the form of this new algorithm. Computer simulation demonstrates that this new algorithm owns greater precision in estimating target state than the present asynchronous fusion algorithm calibrated in time does.