A process of NaOH molten salt roasting-water leaching to treat titanium-vanadium slag obtained by direct reduction of titanomagnetite concentrates was investigated.X-ray diffraction(XRD), scanning electron microscopy(SEM) equipped with energy dispersive spectroscopy(EDS), and thermogravimetry-differential scanning calorimetry(TG-DSC) techniques were used to characterize the samples. The results show that anosovite(Mg_(x)Ti_(3-x)O_(5))and clinopyroxene [Ca(Ti,MgAl)(SiAl)_(2)O_(6)] are the major phases of titanium-vanadium slag. In the NaOH molten salt roasting process, titanium is converted to intermediate product Na_(2)TiO_(3) and vanadium is converted to water-soluble vanadate. The response surface methodology(RSM) was used to optimize the roasting process conditions. NaOH to slag mass ratio(N/S) and roasting temperature are the main influential factors. Under the optimal roasting conditions,i.e., roasting temperature of 550℃, N/S of 1.20, and roasting time of 80 min, the conversions of titanium and vanadium are 96.5 % and 93.0 %, respectively. In the water leaching process, Na_(2)TiO_(3) is converted to amorphous structure of H_(2)TiO_(3) since Na^(+)is exchanged with H^(+). Up to 93.0 % vanadium is leached out under the optimal leaching conditions. Titanium and vanadium in the titanium-vanadium slag can be separated and then recovered.