In order to improve the low ductility of nanostructured materials, a layered and nanostructured (LN) 304 SS (stainless steel) is prepared from warm co-rolled 304 SS pre-treated by surface mechanical attrition treatment. The microstructure and mechanical properties, as well as strain hardening, are analyzed in details. The LN steels ex- hibit both high strength and large ductility resulting from good strain hardening behaviors. The strain hardening can be subdivided into two stages, which involves a multiple cracking along interlaminar at the first stage and a strain-in- duced martensite (SIM) transformation at the second stage. The SIM transformation of nanocrystallines and ultrafine grains induces a larger work hardening exponent by the formation of nanoscaled martensite phase. The effect of grain size on the transformation dynamics is discussed.
In order to investigate nanomechanical properties of nanostructured Ti metallic material, pure Ti films were prepared by magnetron sputtering at the bias voltage of 0-140 V. The microstructure of Ti films was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and high-resolution transmission electron microscopy(HRTEM). It is interesting to find that the microstructure of pure Ti films was characterized by the composite structure of amorphous-like matrix embodied with nanocrystallines, and the crystallization was improved with the increase of bias voltage. The hardness of Ti films measured by nanoindentation tests shows a linear relationship with grain sizes in the scale of 6-15 nm. However, the pure Ti films exhibit a soft tendency characterized by a smaller slope of Hall-Petch relationship. In addition, the effect of bias voltage on the growth orientation of Ti films was discussed.