Effects of Al(Ⅲ) concentration and pH on the speciation of Al(Ⅲ) in polyaluminum chloride (PACl) solutions especially on the Al13 fraction were investigated. A series of PACl samples were prepared over the range of Al(Ⅲ) concentration from 0.01 to 2.0 mol/L with the B (OH/Al ratio) value from 1.0 to 2.5 by forced hydrolysis of AICl3. The samples were characterized by ferron assay, pH and 27^Al NMR. It was shown that the Al(Ⅲ) concentration had a dramatic effect on the hydrolysis processes and the species distribution of PACl was in relate to the decrease of pH. The fraction of Al species, Alb (or Al13) decreased and Al0 increased with increase of total Al(Ⅲ) concentration. Under the condition of Al(Ⅲ) 2.0 reel/L, B = 2.5, the pH value was 2.73 and no Al13 could be detected. During diluting and aging, the species distribution evoIved. The Al13 could then be detected again and the amounts increased with time. If the diluted samples were concentrated by freeze dry at -35℃ or heating at 80℃, the pH value and Al13 content would decrease with the increased concentration. It demonstrated that the key factor for formation of Al13 in concentrated PACl was pH value.
Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin absorbents fractionation. The results showed that particles, NOM and trihalomethane formation precursors were removed synergistically by sequential treatment of different processes. Preozonation markedly changed the polarity and molecular weight of NOM, and it could be conducive to the following coagulation process through destabilizing particles and colloids; mid-ozonation enhanced the subsequent granular activated carbon (GAC) filtration process by decreasing molecular weight of organic matters. Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles; while sand-filtration was more efficient in removing volatile suspended solids and smaller particles. Flotation performed better than sedimentation in terms of particle and NOM removal. The type of coagulant could greatly affect the performance of coagulation-flotation. Pre-hydrolyzed composite coagulant (HPAC) was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids. The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system.
YAN Ming-quan WANG Dong-sheng SHI Bao-you WEI Qun-shan QU Jiu-hui TANG Hong-xiao