Let X be a uniformly convex Banach space X such that its dual X^* has the KK property. Let C be a nonempty bounded closed convex subset of X and G be a directed system. Let ={Tt : t ∈ G} be a family of asymptotically nonexpansive type mappings on C. In this paper, we investigate the asymptotic behavior of {Ttx0 : t∈ G} and give its weak convergence theorem.
Let X be a Banach space, A : D(A) X → X the generator of a compact C0- semigroup S(t) : X → X, t ≥ 0, D a locally closed subset in X, and f : (a, b) × X →X a function of Caratheodory type. The main result of this paper is that a necessary and sufficient condition in order to make D a viable domain of the semilinear differential equation of retarded type u'(t) = Au(t) + f(t, u(t - q)), t ∈ [to, to + T], with initial condition uto = φ ∈C([-q, 0]; X), is the tangency condition lim infh10 h^-1d(S(h)v(O)+hf(t, v(-q)); D) = 0 for almost every t ∈ (a, b) and every v ∈ C([-q, 0]; X) with v(0), v(-q)∈ D.
DONG Qi-xiang LI Gang School of Math. Sci., Yangzhou Univ., Yangzhou 225002, China