The thermal debinding behavior of stainless steel foam precursor in vacuum was studied and compared with that in hydrogen.The formation cause of pore channel was analyzed.The experiment results show that the binder removal rate in vacuum is higher than that in hydrogen.In vacuum,the organic compounds can be removed effectively without change of pore size and the pore morphology for the sample.After pre-sintering,some sintering necks form and the sample has certain intensity.The initial surface pore forms with the temperature increasing at first,and then the internal melting binder is aspirated to form initial pore because of the capillary force and the metal powders re-arrange with the migration of binder at the same time.
A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the active carbon shell precursor.The structures of the composites were examined by scanning electron microscopy and X-ray diffractometry.The electrochemical performance was investigated in electric double layer capacitor and half-cell.The results show that,the composite exhibits good performance in both capacitor and battery with a high reversible capacity of 306.6 mA·h/g(0.2C) in the half-cell,along with a capacitance of 25.8 F/g in the capacitor when an optimum ratio of carbonaceous mesophase spherules to active carbon is adopted.The composite also shows a favorable rate performance and good cycle ability.A working model of this anode in super lithium ion capacitors was established.