The thermal protection performance of superalloy honeycomb structure in high-temperature environments are important for thermal protection design of high-speed aircrafts. By using a self-developed transient aerodynamic thermal simulation system, the thermal protection performance of superalloy honeycomb panel was tested in this paper at different transient heating rates ranging from 5℃/s to 30℃/s, with the maximum instantaneous temperature reaching 950℃. Furthermore, the thermal protection performance of superalloy honeycomb struc- ture under simulated thermal environments was computed for different high heat- ing rates by using 3D finite element method, and a comparison between calcu- lational and experimental results was carded out. The results of this research provide an important reference for the design of thermal protection systems com- prising superalloy honeycomb panel.
Dafang WuAnfeng ZhouLiming ZhengBing PanYuewu Wang