In this paper, we propose a new structure of a centralized-light-source wavelength division multiplexed passive op- tical network (WDM-PON) utilizing inverse-duobinary-return-to-zero (inverse-duobinary-RZ) downstream and DPSK up- stream. It reuses downstream light for the upstream modulation, which retrenches lasers assembled at each optical network unit (ONU), and ultimately cuts down the cost of ONUs a great deal. Meanwhile, a 50-km-reach WDM-PON experiment with 10-Gb/s inverse-duobinary-RZ downstream and 6-Gb/s DPSK upstream is demonstrated here. It is revealed to be a novel cost-effective alternative for the next generation access network.
A room division multiplexing (RDM)-based hybrid visible light communication (VLC) network for realiz- ing indoor broadband communication within a multi-room house is presented. The downlink information is transmitted by light-emitting diode lamps, whereas the uplink information is transmitted through WiFi. RDM is introduced to improve the VLC network throughput; in addition, the associated signaling lo- calization and active handoff mechanisms are designed for implementation. The experimental platform demonstrates the effectiveness of the proposed hybrid architecture, along with the RDM and active handoff mechanisms.