Background:The universal occurrence of randomly distributed dark holes(i.e.,data pits appearing within the tree crown)in LiDAR-derived canopy height models(CHMs)negatively affects the accuracy of extracted forest inventory parameters.Methods:We develop an algorithm based on cloth simulation for constructing a pit-free CHM.Results:The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details.Our pitfree CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms,as evidenced by the lowest average root mean square error(0.4981 m)between the reference CHMs and the constructed pit-free CHMs.Moreover,our pit-free CHMs show the best performance overall in terms of maximum tree height estimation(average bias=0.9674 m).Conclusion:The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.
Wuming ZhangShangshu CaiXinlian LiangJie ShaoRonghai HuSisi YuGuangjian Yan
Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) data,evaluate its correlation with the accuracy of the retrieved stem curves, and subsequently, to assess the capacity of single-scan TLS to estimate stem curves.Methods: We proposed an index, occlusion rate, to quantify the occlusion level in TLS data. We then analyzed three influencing factors for the occlusion rate: the percentage of basal area near the scanning center, the scanning distance and the source of occlusions. Finally, we evaluated the effects of occlusions on stem curve estimates from single-scan TLS data.Results: The results showed that the correlations between the occlusion rate and the stem curve estimation accuracies were strong(r = 0.60–0.83), so was the correlations between the occlusion rate and its influencing factors(r = 0.84–0.99). It also showed that the occlusions from tree stems were the main factor of the low detection rate of stems, while the non-stem components mainly influenced the completeness of the retrieved stem curves.Conclusions: Our study demonstrates that the occlusions significantly affect the accuracy of stem curve retrieval from the single-scan TLS data in a typical-size(32 m × 32 m) forest plot. However, the single-scan mode has the capacity to accurately estimate the stem curve in a small forest plot(< 10 m × 10 m) or a plot with a lower occlusion rate, such as less than 35% in our tested datasets. The findings from this study are useful for guiding the practice of retrieving forest parameters using single-scan TLS data.
Peng WanTiejun WangWuming ZhangXinlian LiangAndrew K.SkidmoreGuangjian Yan