A riverhead is the demarcation point of continuous water channel and seasonal channel, which is characterized by a criti- cal flow that can support a continuous water body. In this study, the critical support discharge (CSD) is defined as the critical steady flows required to form the origin of a stream. The CSD is used as the criterion to determine the beginning of the riverhead, which can be controlled by hydro-climate factors (e.g., annual precipitation, annual evaporation, or minimum stream flow in arid season). The CSD has a close correlation with the critical support/source area (CSA) that largely affects the density of the river network and the division of sub-watersheds. In general, river density may vary with regional meteorological and hydrological conditions that have to be considered in the analysis. In this paper, a new model referring to the relationship of CSA and CSD is proposed, which is based on the physical mechanism for the origin of riverheads. The feasibility of the model was verified using two watersheds (Duilongqu Basin of the Lhasa River and Beishuiqu Basin of the Nyangqu River) in Tibet Autonomous Region to calculate the CSA and extract river networks. A series of CSAs based on different CSDs in derived equation were tested by comparing the extracted river networks with the reference network obtained from a digitized map of river network at large scales. Comparison results of river networks derived from digital elevation model with real ones indicate that the CSD (equal to criterion of flow quantity (Qc)) are 0.0028 m3/s in Duilongqu and 0.0085 m3/s in Beishuiqu. Results show that the Qc can vary with hydro-climate conditions. The Qc is high in humid region and low in arid region, and the optimal Qo of 0.0085 m3/s in Beishuiqu Basin (humid region) is higher than 0.0028 m3/s in Duilongqu Basin (semi-arid region). The suggested method provides a new application approach that can be used to determine the Qo of a riverhead in complex geographical regions, whic
How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of forest succession and revealing the species structure of vegetation.In the present study,the GFSM(Gongga Forest Succession Model) was developed and applied to simulate the distribution,composition and succession process of forests in 100 m elevation intervals.The results indicate that the simulated results of the tree species,quantities of the different types of trees,tree age and differences in DBH(diameter at breast height) composition were in line with the actual situation from 1400 to 3700 MASL(meters above sea level) on the eastern slope of Mt.Gongga.Moreover,the dominant species in the simulated results were the same as those in the surveyed database.Thus,the GFSM model can best simulate the features of forest dynamics and structure in the natural conditions of Mt.Gongga.The work provides a new approach to studying the structure and distribution characteristics of mountain ecosystems in varied elevations.Moreover,the results of this study suggest that the biogeochemistry mechanism model should be combined with the forestsuccession model to facilitate the ecological model in simulating the physical and chemical processes involved.