Optimal stocking densities were investigated for the sea cucumber Apostichopusjaponicus Selenka under feed-supplement and non-feed-supplement regimes in net enclosures for 333 d. Substantial weight loss occurred during the aestivation phase (AE). Decreased growth rates were also observed during the winter phase (WT). In contrast, sea cucumbers showed rapid growth during the spring (SP) and autumn (AU) phases. Feeding regimes considerably influenced the growtb performance, i.e., sea cucumbers grew faster under feed-supplement regime than under non-feed-supplement regime (P 〈 0.05). The average survival rates of sea cucumbers under feed-supplement regime were higher than those under non-feed-supplement regime for both the autumn phase and spring phase, but the differences were only significant for the latter phase (P〈 0.05). The fitted B-N curves showed that the optimal stocking densities, in terms of net production, were 22.3 ind. m^-2 for feed-supplement regime and 14.1 ind. m^-2 for non-feed-supplement regime.
This study investigated the seasonal changes in carbon (C) and nitrogen (N) stable isotope values of several typical food sources of Apostichopus japonicus in a farm pond, including particulate organic matter (POM), macroalgae, benthic microalgae and animals such as nematode and copepod. The stable isotope technique was used to quantify relative contributions of various sources to the food uptake by A. japonicus. The results showed that significant changes occurred in the C and N stable isotope values of sea cucumber food sources due to the seasonality of micro-or macroalgae prosperity and the fluctuation of environmental conditions. The sea cucumber A. japonicus exhibited corresponding alterations in feeding strategy in response to the changes in food conditions. Calculation with a stable isotope mixing model showed that macroalgae was the principal food source for A. japonicus throughout the 1-yr investigation, with the relative contribution averaging 28.1% - 63.2%. The relative contributions of other food sources such as copepod and nematode, POM, benthic microalgae to the total food uptake by sea cucumber averaged 22.6% - 39.1%, 6.3% - 22.2%, 2.8% - 6.5%, and 2.8% - 4.2%, respectively. Together these results indicated that the seasonal changes in food sources led to the obvious temporal differences in the relative contribution of various food sources utilized by A. japonicus. Such findings provide the basic scientific information for improving the aquaculture techniques of A. japonicus, particularly for optimizing the food environment of A. japonicus culture in farm ponds.
SUN ZhenlongGAO QinfengDONG ShuanglinPaul K. S. ShinWANG Fang
Monthly changes in sedimentation and sediment properties were studied for three different culture treatments: sea cucumber monoculture (Mc), sea cucumber and scallop polyculture (Ps-c) and scallop monoculture (Ms). Results indicated that the survival rate of sea cucumber was significantly higher in Ps-c cultures than in Mc cultures. Sea cucumber yield was 69.6% higher in Ps-c culture than in Mc culture. No significant differences in body weight and scallop shell length were found between Ps-c and Ms cultures. The mean sedimentation rate of total particulate matter (TPM) was 72.2 g/(m^2.d) in Ps-c cultures, with a maximum of 119.7 g/(mE.d), which was markedly higher than that of Mc (mean value). Sedimentation rates of organic matter (OM), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in Ps-c cultures were also significantly higher than those in Mc cultures. TOC and TN contents of sediment increased rapidly in the first 5 months in Ms cultures and remained at a high level. TOC and TN contents in Mc and Ps-c cultures decreased during sea cucumber feeding seasons and increased during sea cucumber dormancy periods (summer and winter). The study demonstrates that co-culture of sea cucumber and scallop in earthen ponds is an alternative way to alleviate nutrient loads and improve water quality in coastal aquaculture systems. Moreover, it provides the additional benefit of an increased sea cucumber yield.
Using net enclosures in an earthen pond, we established three culture treatments with the sea cucumber Apostichopus japonicus and the Chinese white shrimp Fenneropenaeus chinensis : monoculture of sea cucumbers(C), monoculture of shrimp(S), and co-culture of the two species(CS). We measured levels of suspended particulate matter in the water column; total organic matter, total organic carbon, total nitrogen, and carbon/nitrogen ratios in both settling particles and the sediment; and chlorophyll a levels in the sediment. We then compared these variables between the three treatments. We also examined growth, survival, and yield of the two species in the different treatments. From June to September, the mean monthly suspended particulate matter sedimentation rates in the CS and S treatments were significantly( P <0.05) greater than those in the C treatment. From August to November, the mean monthly total organic matter, total organic carbon, total nitrogen, and chlorophyll a contents in the sediment in the CS and S treatments were significantly( P <0.05) greater than those in the C treatment. Final wet weight, specific growth rate, survival rate, and total yield of sea cucumbers in co-culture were all significantly greater than those of sea cucumbers in monoculture. There were no significant differences among any of these variables for shrimp reared in the two systems. The bioturbation of the sediment and fecal production of the shrimp likely supplied natural food for the sea cucumbers. Co-culture of the two species is a viable option for increasing yield per unit area, maximizing use of the water body, and diversifying crop production.