A series of polyamic acid copolymers(co-PAAs) with para-hydroxyl groups was synthesized using two diamine monomers,namely p-phenylenediamine(p-PDA) and 5-amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole(m-pHBOA), of different molar ratios through copolymerization with 3,3′,4,4′-biphenyltetracarboxylic dianhydride(BPDA) in N,N-dimethyacetamine(DMAc). The co-PAA solutions were used to fabricate fibers by dry-jet wet spinning, and thermal imidization was conducted to obtain polyimide copolymer(coPI) fibers. The effects of the m-pHBOA moiety on molecular packing and physical properties of the prepared fibers were investigated.Fourier transform infrared(FTIR) spectroscopic results confirmed that intra/intermolecular hydrogen bonds originated from the hydroxyl group and the nitrogen atom of the benzoxazole group and/or the hydroxyl group and the oxygen atom of the carbonyl group of cyclic imide. As-prepared PI fibers displayed homogenous and smooth surface and uniform diameter. The glass transition temperatures(Tgs) of PI fibers were within 311-337 °C. The polyimide fibers showed 5% weight loss temperature(T5%) at above 510 °C in air. Twodimensional wide-angle X-ray diffraction(WXRD) patterns indicated that the homo-PI and co-PI fibers presented regularly arranged polymer chains along the fiber axial direction. The ordered molecular packing along the transversal direction was destroyed by introducing the m-pHBOA moiety. Moreover, the crystallinity and orientation factors increased with increasing draw ratio. Small-angle X-ray scattering(SAXS) results showed that it is beneficial to reduce defects in the fibers by increasing the draw ratio. The resultant PI fibers exhibited excellent mechanical properties with fracture strength and initial modulus of 2.48 and 89.73 GPa, respectively, when the molar ratio of p-PDA/m-pHBOA was 5/5 and the draw ratio was 3.0.
Xue-Min DaiHong GaoRan ZhangZhi-Jun DuTong-Fei ShiXiang-Ling JiXue-Peng QiuYong-Feng Men
In this study, polyimide fibers at different stages of imidization were characterized by TGA, DSC, and FTIR. The imidization degree (ID) calculated by TGA was based on the weight loss of each sample, which was caused by the imidization of residual amic acid groups. The results of TGA showed good regularity with the thermal treatment temperature of the PI fibers. For DSC, the ID was calculated based on the area of endothermal peak of each sample. Compared with TGA, DSC showed a relatively higher value because the endothermal peak was reduced by the exothermic re-formation of polyamic acid which may be partially degraded during thermal treatment. The IDs obtained by the FTIR spectra generally showed poorer regularities than those obtained by both TGA and DSC, especially for the results calculated using the 730 cm^-1 band. Based on the 1350 cm^-1 band, the obtained IDs showed better agreement with the TGA or DSC results. The results obtained by these three methods were compared and analyzed. The ID obtained by TGA showed much more reliability among these three methods.
This study details Ni-catalyzed cross coupling of aryl Grignard reagents with aryl halides in toluene, a nonpolar solvent with a high boiling point. The reaction was applied for the synthesis of various biaryls in good yields without the introduction of a large steric ligand. The Kumada-Tamao-Corriu(KTC) reaction in toluene was then successfully modified to proceed under neat conditions for the efficient syntheses of symmetrical biaryls, particularly in large-scale preparations. Unactivated aryl chlorides show higher reactivity than aryl bromides, particularly under neat conditions. Mechanistic investigations suggest a radical procedure for the catalytic cycle, and the origin of the radical intermediates being aryl halides.
以均苯四甲酸二酐、4,4'-二氨基二苯醚、3,3'-二氨基二苯醚为原料,以N,N-二甲基乙酰胺为溶剂,制得聚酰胺酸(PAA)纺丝液,采取干法纺丝制得PAA初生纤维,将PAA初生纤维经过300~380℃的热处理后,得到聚酰亚胺(PI)初生纤维,在400℃下对PI初生纤维进行热拉伸,最终得到PI纤维,研究了热处理温度、热拉伸倍数等对PI纤维的结构与性能的影响,比较了PI纤维与P84纤维和芳纶1313的性能。结果表明:在300~380℃的热处理温度下,随着温度升高,PI纤维的力学性能降低,最佳热处理温度为300℃时制得的PI初生纤维于400℃下进行热拉伸3.0倍,所得PI纤维的断裂强度为5.8 c N/dtex,初始模量为69.4c N/dtex,其力学性能优于P84纤维及芳纶1313;PI纤维在空气中失重5%和10%的温度分别为560,570℃,其起始分解温度高于P84纤维和芳纶1313,热性能更好;PI纤维经高温热拉伸,纤维内部分子链沿纤维轴向高度取向,表现出典型的取向诱导结晶效应。