Employing nonlinear spectral imaging technique based on two-photon-excited fluorescence and second- harmonic generation (SHG) of biological tissue, we combine the image-guided spectral analysis method and multi-channel subsequent detection imaging to map and visualize the intrinsic species in a native rabbit aortic wall. A series of recorded nonlinear spectral images excited by a broad range of laser wavelengths (730- 910 nm) are used to identify five components in the native rabbit aortic wall, including nicotinamide adenine dinucleotide (NADH), elastic fiber, flavin, porphyrin derivatives, and collagen. Integrating multichannel subsequent detection imaging technique, the high-resolution, high contrast images of collagen and elastic fiber in the aortic wall are obtained. Our results demonstrate that this method can yield complementary biochemical and morphological information about aortic tissues, which have the potential to determine the tissue pathology associated with mechanical properties of aortic wall and to evaluate the phaxmacodynamical studies of vessels.
Skin scar is unique to humans,the major significant negative outcome sustained after thermal injuries,traumatic injuries,and surgical procedures.Hypertrophic scar in human skin is investigated using non-linear spectral imaging microscopy.The high contrast images and spectroscopic intensities of collagen and elastic fibers extracted from the spectral imaging of normal skin tissue,and the normal skin near and far away from the hypertrophic scar tissues in a 10-year-old patient case are obtained.The results show that there are apparent differences in the morphological structure and spectral characteristics of collagen and elastic fibers when comparing the normal skin with the hypertrophic scar tissue.These differences can be good indicators to differentiate the normal skin and hypertrophic scar tissue and demonstrate that non-linear spectral imaging microscopy has potential to noninvasively investigate the pathophysiology of human hypertrophic scar.