The exact controllability of second order stochastic impulsive differential equations in Hilbert spaces is studied.By using the Holder's inequality,stochastic analysis and fixed point strategy,some sufficient conditions are given,but no compactness condition is imposed on the cosine family of operators.This work improves some previous results without impulses or stochastic factors.
An initial value problem was considered for a coupled differential system with multi-term Caputo type fractional derivatives. By means of nonlinear alternative of Leray-Schauder and Banach contraction principle,the existence and uniqueness of solutions for the system were derived. Using a fractional predictorcorrector method, a numerical method was presented for the specified system. An example was given to illustrate the obtained results.
This paper deals with the approximate controllability of semilinear neutral functional differential systems with state-dependent delay. The fractional power theory and α-norm are used to discuss the problem so that the obtained results can apply to the systems involving derivatives of spatial variables. By methods of functional analysis and semigroup theory, sufficient conditions of approximate controllability are formulated and proved. Finally, an example is provided to illustrate the applications of the obtained results.
The Turing instability and the phenomena of pattern formation for a nonlinear reaction-diffusion(RD) system of turbulence-shear flowinteraction are investigated.By the linear stability analysis,the essential conditions for Turing instability are obtained.It indicates that the emergence of cross-diffusion terms leads to the destabilizing mechanism.Then the amplitude equations and the asymptotic solutions of the model closed to the onset of instability are derived by using the weakly nonlinear analysis.
In this paper we devote ourselves to the study of the asymptotic behavior of a size-structured pop- ulation dynamics with random diffusion and delayed birth process. Within a semigroup framework, we discuss the local stability and asynchrony respectively for the considered population system under some conditions. We use for our discussion the techniques of operator matrices, Hille-Yosida operators, positivity, spectral analysis as well as Perron-Frobenius theory.