To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous traffic flow to mixed traffic flow.Based on the procedure and queuing theory,car capacity and speed models were proposed for three types of bus stops including curbside,bus bay and bicycle detour.The effects of various combinations of bus stop type,traffic volume,bus dwell time,and berth number on traffic operations were investigated.The results indicate that traffic volume,bus dwell time and berth number have negative effects on traffic operations for any type of bus stops.For different types of bus stops,at car volumes above approximately 200 vehicles per hour,the bus bay and bicycle detour designs provide more benefits than the curbside design.As traffic volume increases,the benefit firstly increases in uncongested conditions and then decreases in congested conditions.It reaches the maximum at car volumes nearly 1 100 vehicles per hour.The results can be used to aid in the selection of a preferred bus stop design for a given traffic volume in developing countries.
Traffic incident happens frequently in urban traffic network and it affects normal operation of traffic system seriously so that study on incident-based congestion control strategies is very important. This study addresses the problem of the temporary vehicle movement bans design under incident-based traffic congestion situation. A bi-level programming model is proposed to formulate this problem. The upper level problem is to minimize the total travel cost in the view of traffic management agencies, and the lower level problem is to present travelers’ dynamic route choice behavior under temporary vehicle movement bans using the simulation of cell transmission model, then a genetic algorithm is employed to solve the proposed bi-level programming model. Computational results show that the temporary vehicle movement bans measure is able to alleviate the traffic network incident-based congestion effectively and improve system performance of traffic network.
This paper presents an augmented network model to represent urban transit system.Through such network model,the urban transit assignment problem can be easily modeled like a generalized traffic network.Simultaneously,the feasible route in such augmented transit network is then defined in accordance with the passengers' behaviors.The passengers' travel costs including walking time,waiting time,in-vehicle time and transfer time are formulated while the congestions at stations and the congestions in transit vehicles are all taken into account.On the base of these,an equilibrium model for urban transit assignment problem is presented and an improved shortest path method based algorithm is also proposed to solve it.Finally,a numerical example is provided to illustrate our approach.
To determinate car capacity at bus stops with mixed traffic, a new theoretical approach was developed on the basis of additive-conflict-flows procedure. The procedure was extended from homogeneous traffic flow to mixed traffic flow. The conflicts among cars, buses and bicycles near the stop can be described by the extended procedure. The procedure can be understood more easily than the theory of gap acceptance. Car capacity near the stop is the function of both bus stream and bicycle stream. The proposed model can also analyze the cases of pedestrian effects and limited priority of bicyclists. Numerical results show that the car capacity decreases with the increasing flow rates of other streams. In addition, pedestrian effects and bicyclist's limited priority have negative effects on car capacity near bus stops with mixed traffic flow.