支持矢量数据描述(Support vector data description,SVDD)是一种单值分类方法,可以解决故障诊断中故障样本缺乏的问题。矢双谱方法是基于全矢谱信息融合的双谱分析方法,能够有效融合旋转机械的双通道信息,更加全面、准确地反映信号中所包含的非线性故障特征信息。为实现在缺乏故障样本的情况下,对设备故障进行有效的智能诊断,提出一种矢双谱和SVDD相结合的智能故障诊断方法。采用矢双谱对双通道信号进行处理并提取特征矢量,作为SVDD的输入参数,建立起分类模型即可对机器运行状态进行分类。将该方法应用于齿轮箱的故障诊断中,结果表明可有效提取齿轮箱信号的特征信息,提高SVDD在故障诊断中的准确度。
双谱是处理非线性、非高斯性信号的有力工具,而支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,可以解决故障诊断中故障样本缺乏的问题。基于此,提出一种基于双谱和SVDD相结合的故障智能诊断方法。该方法采用双谱对振动信号进行处理并提取特征向量,以此作为SVDD的输入参数进行训练和分类。将该方法应用于滚动轴承的故障诊断中,结果表明,该方法可以有效提取轴承信号的特征信息,提高SVDD在故障诊断中的准确性。
传统的单通道信号分析容易造成信息缺失和诊断结论不一致等问题,这些问题可由全矢谱分析技术来解决。动态支持向量数据描述算法是对传统支持向量数据描述的改进算法,它的分类边界随着被测样本数的不断增加而不断更新,具有自学习能力。将全矢谱分析技术与动态支持向量数据描述算法相结合而提出全矢谱动态支持向量数据描述(vector spectrum dynamic support vector data description,VSDSVDD)的故障诊断新方法。运用全矢谱技术对数据进行处理,并提取特征矢量,作为VSDSVDD的输入参数,建立起分类模型即可以对机器运行状态进行分类。实验表明,该方法具有很好的分类准确性。