The intelligent integrated predictive model of synthetical permeability was established using the fuzzy classifier to combine the time sequence predictive model with the craftwork parameter predictive model. Then, the estimation model of burn-through point(BTP) based on pipe stress point(PSP) method and the predictive model of BTP were proposed. The optimal control of permeability and heat states was implemented by using the fuzzy expert controller with self-studying mechanism. The application of the intelligent control technique suppresses 17% of the fluctuation of synthetical permeability and 12% of the fluctuation of BTP, stabilizes the output and quality of sinter and settles the basis for the optimization of output and quality of sintering process.
In order to analyze power system stability in environment of WAMS(wide area measurement system),a new steady state stability model with time-varying delay was proposed for power system.The factors of exciter and power system stabilizer with delay were introduced into analytical model.To decrease conservativeness of stability analysis,an improved Lyapunov-Krasovskii functional was constructed,and then a new delay-dependent steady state stability criterion for power system,which overcomes the disadvantages of eigenvalue computation method,was derived.The proposed model and criterion were tested on synchronous-machine infinite-bus power system.The test results demonstrate that Lyapunov-Krasovskii functional based power system stability analysis method is applicable and effective in the analysis of time delay power system stability.
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.
A networked control and supervision system (NCSS) based on LonWorks fieldbus and lntranet/Intemet was designed, which was composed of the universal intelligent control nodes (ICNs), the visual control and supervision configuration platforms (VCCP and VSCP) and an Intranet/Internet-based remote supervision platform (RSP). The ICNs were connected to field devices, such as sensors, actuators and controllers. The VCCP and VSCP were implemented by means of a graphical programming environment and network management so as to simplify the tasks of programming and maintaining the ICNs. The RSP was employed to perform the remote supervision function, which was based on a three-layer browser/server(B/S) structure mode. The validity of the NCSS was demonstrated by laboratory experiments.