This article is concerned with a system of semilinear parabolic equations with no-flux boundary condition in a mutualistic ecological model. Stability result of the equilibrium about relevant ODE problem is proved by discussing its Jacobian matrix, we give two priori estimates and prove that the model is permanent when ε1 +ε2≠ 0. Moreover sufficient conditions for the global asymptotical stability of the unique positive equilibrium of the model are obtained. Nonexistence of nonconstant positive steady states of the model is also given. When ε1 +ε2 = 0, grow up property is derived if the geometric mean of the interaction coefficients is greater than I (a1a2 〉 1), while if the geometric mean of the interaction coefficients is less than I (a1a2 〈 1), there exists a global solution. Finally, numerical simulations are given.
The two-dimensional primitive equations with Lévy noise are studied in this paper.We prove the existence and uniqueness of the solutions in a fixed probability space which based on a priori estimates,weak convergence method and monotonicity arguments.