您的位置: 专家智库 > >

国家自然科学基金(60776793)

作品数:1 被引量:2H指数:1
相关机构:北京航空航天大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:兵器科学与技术自动化与计算机技术更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇自动化与计算...
  • 1篇兵器科学与技...

主题

  • 1篇SATELL...
  • 1篇SET
  • 1篇THREE-...
  • 1篇BASED_...
  • 1篇KERNEL
  • 1篇NT

机构

  • 1篇北京航空航天...

传媒

  • 1篇Chines...

年份

  • 1篇2010
1 条 记 录,以下是 1-1
排序方式:
Full-viewpoint 3D Space Object Recognition Based on Kernel Locality Preserving Projections被引量:2
2010年
Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-dimensional (3D) satellites dataset named BUAA Satellite Image Dataset (BUAA-SID 1.0) to supply data for 3D space object research. Then, based on the dataset, we propose to recognize full-viewpoint 3D space objects based on kernel locality preserving projections (KLPP). To obtain more accurate and separable description of the objects, firstly, we build feature vectors employing moment invariants, Fourier descriptors, region covariance and histogram of oriented gradients. Then, we map the features into kernel space followed by dimensionality reduction using KLPP to obtain the submanifold of the features. At last, k-nearest neighbor (kNN) is used to accomplish the classification. Experimental results show that the proposed approach is more appropriate for space object recognition mainly considering changes of viewpoints. Encouraging recognition rate could be obtained based on images in BUAA-SID 1.0, and the highest recognition result could achieve 95.87%.
孟钢姜志国刘正一张浩鹏赵丹培
关键词:SATELLITESTHREE-DIMENSIONAL
共1页<1>
聚类工具0