An amidoxime-based ultra-high molecular weight polyethylene (UHMWPE) fibrous adsorbent was successfully prepared by T-irradiation-induced graft copolymerization of acrylonitrile (AN) and acrylic acid (AA), followed by amidoximation. The grafting of AN and AA on the UHMWPE fiber and the amidoximation of the grafted fiber were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The mechanical property of the original and modified UHMWPE fibers was compared by single-filament strength test. The adsorption property of the UHMWPE fibrous adsorbent was evaluated by adsorption test in uranyl nitrate solution and seawater. The surface of the modified UHMWPE fibers was covered by the grafting layer and became rough. The tensile strength of the amidoxime-based UHMWPE fibrous adsorbent was influenced by the absorbed dose and hydrochloric acid elution, but was independent of the grafting yield and amidoximation. The uranium adsorption amount of the amidoxime-based UHMWPE fibrous adsorbent after immersing in seawater for 42 days was 2.3 mg-U/g.
通过低温等离子体接枝改性方法将丙烯酸(Acrylic acid,AAc)接枝聚合于聚四氟乙烯(Polytetrafluoroethylene,PTFE)薄膜表面,随后进行无钯化学镀铜,制备出表面镀铜的PTFE薄膜(PTFE-g-PAAc-Cu)。衰减全反射傅里叶变换红外光谱(ATR-FTIR)测试结果表明,丙烯酸成功地接枝于PTFE薄膜表面;通过扫描电镜(Scanning electron microscopy,SEM)和原子力显微镜(Atomic force microscopy,AFM)观察发现,镀铜均匀沉积于PTFE薄膜表面;3M胶带粘贴方法(ASTM D3359标准)评估结果表明,铜层与PTFE薄膜粘结牢固,3M胶带未能够将铜层与PTFE薄膜分离开;电性能测试结果表明,PTFE-g-PAAc-Cu的表面电阻(Rs)降至1.27′10^(-2)Ω/sq,电阻率降至50.1μΩ?cm,其导电性由绝缘体提高到导体水平(导体的电阻率范围为1~10~3μΩ?cm),有望在柔性覆铜板领域获得应用。
An amidoxime-based polymeric adsorbent was prepared by pre-irradiation grafting of acrylonitrile and acrylic acid onto high-density polyethylene fibers using electron beams,followed by amidoximation.Quantitative recovery of uranium was investigated by flow-through experiment using simulated seawater and marine test in natural seawater.The maximum amount of uranium uptake was 2.51 mg/g-ads after 42 days of contact with simulated seawater and 0.13 mg/g-ads for 15 days of contact with natural seawater.A lower uranium uptake in marine test can be attributed to the short adsorption time and the contamination of marine microorganisms and iron.However,the high selectivity toward uranium against vanadium may be beneficial to harvest uranyl ion onto adsorbents and the economic feasibility for recovery of uranium from seawater.
通过预辐射接枝方法在聚四氟乙烯(PTFE)微粉上成功接枝丙烯酸(AAc)和2-丙烯酰胺-2-甲基丙磺酸(AMPS),制备了高亲水性的PTFE微粉.采用红外光谱(FTIR)、X射线光电子能谱(XPS)和接触角(CA)测试表征了改性PTFE微粉的化学结构和亲水性变化;采用扫描电子显微镜(SEM)观察改性PTFE微粉表面形貌;采用电泳法测试了改性PTFE微粉的zeta电位;通过热重分析(TGA)测试了辐射接枝对PTFE微粉热稳定性的影响.结果表明,改性PTFE微粉亲水性和分散稳定性随着接枝率的增加而增强;在单体浓度为20%,AAc与AMPS之比为2且反应温度为70℃时接枝率达到26.6%,此时改性样品PTFE-g-P(AAc-co-AMPS)在水溶液中的分散稳定性效果较好,并能够长期稳定存在.水接触角由改性前的148.8°下降到改性后的30.2°,对应的zeta电位从-4.3 m V降为-83.4 m V.