您的位置: 专家智库 > >

国家自然科学基金(11074313)

作品数:2 被引量:0H指数:0
相关作者:刘瑞萍王锐鲁胜强更多>>
相关机构:重庆大学太原理工大学温州医学院更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学化学工程更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇理学
  • 1篇化学工程

主题

  • 1篇位错
  • 1篇APPROX...
  • 1篇ATION
  • 1篇DISCRE...
  • 1篇EQUATI...
  • 1篇FE
  • 1篇ISOTRO...
  • 1篇DISLOC...

机构

  • 1篇温州医学院
  • 1篇太原理工大学
  • 1篇重庆大学

作者

  • 1篇鲁胜强
  • 1篇王锐
  • 1篇刘瑞萍

传媒

  • 1篇原子与分子物...
  • 1篇Acta M...

年份

  • 2篇2012
2 条 记 录,以下是 1-2
排序方式:
THE DISLOC ATION EQU ATIONS OF A SIMPLE CUBIC CRYSTAL IN THE ISOTROPIC APPROXIMATION-A SOLVABLE MODEL
2012年
The dislocation equations of a simple cubic lattice have been obtained by using Green's function method based on the discrete lattice theory with the coefficients of the secondorder differential terms and the integral terms have been given explicitly in advance. The simple cubic lattice we have discussed is a solvable model, which is obtained according to the lattice statics and the symmetry principle and can verify and validate the dislocation lattice theory. It can present unified dislocation equations which are suitable for most of metals with arbitral lattice structures. Through comparing the results of the present solvable model with the dislocation lattice theory, it can be seen that, the coefficients of integral terms of the edge and screw components we obtain are in accordance with the results of the dislocation lattice theory, however, the coefficient of the second-order differential term of the screw component is not in agreement with the result of the dislocation lattice theory. This is mainly caused by the reduced dynamical matrix of the surface term, which is the essence to obtain the dislocation equation. According to the simple cubic solvable model, not only the straight dislocations but also the curved dislocations, such as the kink, can be investigated further.
Ruiping LiuShengqiang LuRui Wang
Fe中<100>{010)刃位错芯结构的各向异性修正
2012年
在位错晶格理论基础上,采用改进的Peierls-Nabarro方程研究了Fe中〈100〉{010}刃位错在各向异性近似下的芯结构和Peierls应力.各向异性近似下的晶格离散效应、切变模量和能量因子的表达式都已确切给出.在这三个各向异性因素中,晶格离散效应和能量因子可以使位错宽度变窄,切变模量可以使位错宽度变宽.相比于各向同性近似,各向异性近似下的位错宽度变窄了近20%,并且各向异性近似下的位错宽度与数值计算的结果相一致.更为重要的是,各向异性使位错的Peierls应力数值几乎加倍,数量级也由MPa变成了GPa,而这些都会显著影响位错的运动机制.因此,各向异性对于位错来说非常重要,在研究位错芯结构以及运动机制时需要考虑各向异性的影响.
刘瑞萍鲁胜强王锐
关键词:位错
共1页<1>
聚类工具0