In this paper, we derive a general vector Ekeland variational principle for set-valued mappings, which has a dosed relation to εk^0 -efficient points of set-valued optimization problems. The main result presented in this paper is a generalization of the corresponding result in [3].
In this paper, a system of generalized symmetric vector quasi-equilibrium problems for set-valued mappings is introduced. By using a scalarization method and a fixed-point theorem, the existence result for its solution is established. The main result extends the corresponding results in Fu (J. Math. Anal. Appl. 285, 708–713, 2003) and Zhang, Chen and Li (OR Transactions 10, 24–32, 2006).