您的位置: 专家智库 > >

国家自然科学基金(11171028)

作品数:3 被引量:3H指数:1
相关作者:赵敦孙春友冯斌华更多>>
相关机构:兰州大学更多>>
发文基金:国家自然科学基金中央高校基本科研业务费专项资金教育部“新世纪优秀人才支持计划”更多>>
相关领域:理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学

主题

  • 2篇SCHR
  • 2篇SOLUTI...
  • 2篇ENERGY
  • 1篇非线性
  • 1篇非线性SCH...
  • 1篇非线性项
  • 1篇爆破解
  • 1篇NONLIN...
  • 1篇SCH
  • 1篇SEMILI...
  • 1篇DINGER...
  • 1篇EQUATI...
  • 1篇O

机构

  • 1篇兰州大学

作者

  • 1篇冯斌华
  • 1篇孙春友
  • 1篇赵敦

传媒

  • 2篇Scienc...
  • 1篇兰州大学学报...

年份

  • 1篇2017
  • 1篇2015
  • 1篇2013
3 条 记 录,以下是 1-3
排序方式:
Least energy solutions for semilinear Schrdinger equation with electromagnetic fields and critical growth被引量:2
2015年
We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields.
TANG ZhongWeiWANG YanLi
带有时间振荡项的非线性Schrdinger方程爆破解的渐近波形
2013年
研究了带有时间振荡项的非线性Schrdinger方程爆破解的渐近波形.该方程描述激光在非均匀介质中的传播.通过伸缩和紧性论证获得了爆破解的渐近波形和集中性质.
冯斌华赵敦孙春友
关键词:非线性SCHRODINGER方程爆破解
Least energy solutions of nonlinear Schr odinger equations involving the fractional Laplacian and potential wells被引量:1
2017年
We are concerned with the existence of least energy solutions of nonlinear Schrodinger equations involving the fractional Laplacian(-△)%s u(x)+λV(x)u(x)=u(x)^(p-1),u(x)〉=0,x∈R^N,for sufficiently large λ,2〈p〈N-2s^-2N for N≥2. V(x) is a real continuous function on RN. Using variational methods we prove the existence of least energy solution uλ(x) which localizes near the potential well int V-1 (0) for A large. Moreover, if the zero sets int V-1 (0) of V(x) include more than one isolated component, then ux(x) will be trapped around all the isolated components. However, in Laplacian case s = 1, when the parameter A is large, the corresponding least energy solution will be trapped around only one isolated component and become arbitrarily small in other components of int V^-1(0). This is the essential difference with the Laplacian problems since the operator (-△)s is nonlocal.
NIU MiaoMiaoTANG ZhongWei
共1页<1>
聚类工具0