The age softening phenomenon of the Li−B alloy was investigated by a series of tensile tests under various aging conditions.The results show that the tensile strength of the rolled Li−B alloy decreases with increasing aging time.Higher aging temperature accelerates the softening process,and leads to an early end of aging.A model was proposed to analyze the mechanism of the age softening.The vacancy annihilation is the control factor of age softening.The strength−temperature relationship was estimated by the newly proposed model and a standard heat treatment,annealing at 150℃ for 1 h,was designed to eliminate the age softening of rolled Li−B alloy.
The LiB compounds in lithium deficient state were prepared by three methods and its crystal structure was investigated by using XRD. It is found that the lattice constant c of the compound will increase step by step with decreasing Li content from 0.2796nm of the normal LiB to 0.2886, 0.2981 and 0.3118nm of the lithium deficient LiB. The change of the lattice constant is reversible.
A model for reaction synthesis of Li-B alloys has been presented. Results show that the first exothermal reaction can be divided into three stages. The first stage is an instantaneous reaction on the boundary between boron particles and lithium melting, in which the caloric released is inversely proportional to the particle size of the boron powder. The second stage is a reaction between the unreacted boron and the lithium that diffuses through the product LiB3 on the surface of the boron particle. This process can be described by Johnston model. The third stage is dissolution of the product LiB3 to Li liquid, which takes place at temperature up to 420℃. At the same time, the second exothermal reaction begins, which consists of nucleation and growth of the last Li-B compound. It can be divided into two substages, i.e. the nucleation pregnant stage and the exploded reaction stage. When the concentration of the particle nucleated is high enough, an exploding reaction takes place. The lower the temperature, the longer the time needed for the exploding reaction. By the model presented, the experimental phenomena in the synthesis are explained.
Electrochemical behavior of LiB compound in LiPF6-DMC/EMC/EC was studied. And morphology of the compound was investigated by SEM. The results show that there are three discharge potential plateaus for the LiB compound, corresponding to 0.46, 0.69 and 0.8 V (vs Li+/Li) respectively, its total discharge specific capacity is up to 660 mA·h/g, only first two potential plateau can be charged, its specific capacity is 274 mA·h/g. After discharging, the morphology of the Li compound is still fibrous shape.